L(s) = 1 | + (−1.26 + 0.631i)2-s + (0.528 − 1.64i)3-s + (1.20 − 1.59i)4-s + (2.66 + 1.54i)5-s + (0.372 + 2.42i)6-s + (−1.46 − 2.20i)7-s + (−0.511 + 2.78i)8-s + (−2.44 − 1.74i)9-s + (−4.34 − 0.264i)10-s + (−0.621 − 1.07i)11-s + (−2.00 − 2.82i)12-s + 5.98·13-s + (3.24 + 1.86i)14-s + (3.95 − 3.58i)15-s + (−1.10 − 3.84i)16-s + (−0.595 − 1.03i)17-s + ⋯ |
L(s) = 1 | + (−0.894 + 0.446i)2-s + (0.305 − 0.952i)3-s + (0.601 − 0.799i)4-s + (1.19 + 0.688i)5-s + (0.152 + 0.988i)6-s + (−0.552 − 0.833i)7-s + (−0.180 + 0.983i)8-s + (−0.813 − 0.581i)9-s + (−1.37 − 0.0835i)10-s + (−0.187 − 0.324i)11-s + (−0.577 − 0.816i)12-s + 1.66·13-s + (0.866 + 0.498i)14-s + (1.02 − 0.926i)15-s + (−0.277 − 0.960i)16-s + (−0.144 − 0.250i)17-s + ⋯ |
Λ(s)=(=(168s/2ΓC(s)L(s)(0.849+0.528i)Λ(2−s)
Λ(s)=(=(168s/2ΓC(s+1/2)L(s)(0.849+0.528i)Λ(1−s)
Degree: |
2 |
Conductor: |
168
= 23⋅3⋅7
|
Sign: |
0.849+0.528i
|
Analytic conductor: |
1.34148 |
Root analytic conductor: |
1.15822 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ168(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 168, ( :1/2), 0.849+0.528i)
|
Particular Values
L(1) |
≈ |
0.930409−0.265767i |
L(21) |
≈ |
0.930409−0.265767i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.26−0.631i)T |
| 3 | 1+(−0.528+1.64i)T |
| 7 | 1+(1.46+2.20i)T |
good | 5 | 1+(−2.66−1.54i)T+(2.5+4.33i)T2 |
| 11 | 1+(0.621+1.07i)T+(−5.5+9.52i)T2 |
| 13 | 1−5.98T+13T2 |
| 17 | 1+(0.595+1.03i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.614−1.06i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.56−1.48i)T+(11.5+19.9i)T2 |
| 29 | 1+3.19T+29T2 |
| 31 | 1+(−1.33+0.773i)T+(15.5−26.8i)T2 |
| 37 | 1+(−0.334−0.193i)T+(18.5+32.0i)T2 |
| 41 | 1+9.44T+41T2 |
| 43 | 1−8.29iT−43T2 |
| 47 | 1+(3.34−5.78i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−5.25−9.09i)T+(−26.5+45.8i)T2 |
| 59 | 1+(3.22−1.86i)T+(29.5−51.0i)T2 |
| 61 | 1+(3.16−5.48i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−10.7+6.19i)T+(33.5−58.0i)T2 |
| 71 | 1+6.21iT−71T2 |
| 73 | 1+(8.92−5.15i)T+(36.5−63.2i)T2 |
| 79 | 1+(6.41−11.1i)T+(−39.5−68.4i)T2 |
| 83 | 1+5.22iT−83T2 |
| 89 | 1+(−6.94+12.0i)T+(−44.5−77.0i)T2 |
| 97 | 1+17.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.13397363629929166454289109585, −11.36231598464248258509898896724, −10.57726225495767187167270945693, −9.567720499508888225342437770589, −8.581532782999557114144851975032, −7.40939628229458030138601818048, −6.44240825633041821966262100308, −5.91692881480966728745152835451, −3.04595954920602485963164487899, −1.42247552979914511937626957468,
2.06288580055550487146749036414, 3.53779934452240452370399340784, 5.32411500777280023675178438952, 6.45261460706542591088995079548, 8.505969529882563175688937616572, 8.889153954834529624642533208361, 9.775854861911479327766395474476, 10.54258544731950476723070461494, 11.63885088831734133399559720505, 12.94800372766333154175729724913