L(s) = 1 | + (−1.26 + 0.631i)2-s + (0.528 − 1.64i)3-s + (1.20 − 1.59i)4-s + (2.66 + 1.54i)5-s + (0.372 + 2.42i)6-s + (−1.46 − 2.20i)7-s + (−0.511 + 2.78i)8-s + (−2.44 − 1.74i)9-s + (−4.34 − 0.264i)10-s + (−0.621 − 1.07i)11-s + (−2.00 − 2.82i)12-s + 5.98·13-s + (3.24 + 1.86i)14-s + (3.95 − 3.58i)15-s + (−1.10 − 3.84i)16-s + (−0.595 − 1.03i)17-s + ⋯ |
L(s) = 1 | + (−0.894 + 0.446i)2-s + (0.305 − 0.952i)3-s + (0.601 − 0.799i)4-s + (1.19 + 0.688i)5-s + (0.152 + 0.988i)6-s + (−0.552 − 0.833i)7-s + (−0.180 + 0.983i)8-s + (−0.813 − 0.581i)9-s + (−1.37 − 0.0835i)10-s + (−0.187 − 0.324i)11-s + (−0.577 − 0.816i)12-s + 1.66·13-s + (0.866 + 0.498i)14-s + (1.02 − 0.926i)15-s + (−0.277 − 0.960i)16-s + (−0.144 − 0.250i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.849 + 0.528i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.849 + 0.528i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.930409 - 0.265767i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.930409 - 0.265767i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.26 - 0.631i)T \) |
| 3 | \( 1 + (-0.528 + 1.64i)T \) |
| 7 | \( 1 + (1.46 + 2.20i)T \) |
good | 5 | \( 1 + (-2.66 - 1.54i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.621 + 1.07i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.98T + 13T^{2} \) |
| 17 | \( 1 + (0.595 + 1.03i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.614 - 1.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.56 - 1.48i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3.19T + 29T^{2} \) |
| 31 | \( 1 + (-1.33 + 0.773i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.334 - 0.193i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 9.44T + 41T^{2} \) |
| 43 | \( 1 - 8.29iT - 43T^{2} \) |
| 47 | \( 1 + (3.34 - 5.78i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.25 - 9.09i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.22 - 1.86i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.16 - 5.48i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.7 + 6.19i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6.21iT - 71T^{2} \) |
| 73 | \( 1 + (8.92 - 5.15i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.41 - 11.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 5.22iT - 83T^{2} \) |
| 89 | \( 1 + (-6.94 + 12.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 17.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.13397363629929166454289109585, −11.36231598464248258509898896724, −10.57726225495767187167270945693, −9.567720499508888225342437770589, −8.581532782999557114144851975032, −7.40939628229458030138601818048, −6.44240825633041821966262100308, −5.91692881480966728745152835451, −3.04595954920602485963164487899, −1.42247552979914511937626957468,
2.06288580055550487146749036414, 3.53779934452240452370399340784, 5.32411500777280023675178438952, 6.45261460706542591088995079548, 8.505969529882563175688937616572, 8.889153954834529624642533208361, 9.775854861911479327766395474476, 10.54258544731950476723070461494, 11.63885088831734133399559720505, 12.94800372766333154175729724913