L(s) = 1 | + (0.717 + 1.21i)2-s + (1.11 − 1.32i)3-s + (−0.971 + 1.74i)4-s + (0.337 + 0.195i)5-s + (2.41 + 0.401i)6-s + (1.39 + 2.24i)7-s + (−2.82 + 0.0704i)8-s + (−0.529 − 2.95i)9-s + (0.00458 + 0.551i)10-s + (−0.748 − 1.29i)11-s + (1.24 + 3.23i)12-s + 3.28·13-s + (−1.73 + 3.31i)14-s + (0.634 − 0.232i)15-s + (−2.11 − 3.39i)16-s + (−1.68 − 2.91i)17-s + ⋯ |
L(s) = 1 | + (0.507 + 0.861i)2-s + (0.641 − 0.766i)3-s + (−0.485 + 0.874i)4-s + (0.151 + 0.0872i)5-s + (0.986 + 0.164i)6-s + (0.527 + 0.849i)7-s + (−0.999 + 0.0249i)8-s + (−0.176 − 0.984i)9-s + (0.00144 + 0.174i)10-s + (−0.225 − 0.390i)11-s + (0.358 + 0.933i)12-s + 0.911·13-s + (−0.464 + 0.885i)14-s + (0.163 − 0.0599i)15-s + (−0.528 − 0.848i)16-s + (−0.407 − 0.706i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.693 - 0.720i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.693 - 0.720i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.55418 + 0.660921i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.55418 + 0.660921i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.717 - 1.21i)T \) |
| 3 | \( 1 + (-1.11 + 1.32i)T \) |
| 7 | \( 1 + (-1.39 - 2.24i)T \) |
good | 5 | \( 1 + (-0.337 - 0.195i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.748 + 1.29i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.28T + 13T^{2} \) |
| 17 | \( 1 + (1.68 + 2.91i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.56 - 4.43i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.72 + 2.72i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.13T + 29T^{2} \) |
| 31 | \( 1 + (3.60 - 2.07i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-7.46 - 4.31i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 11.1T + 41T^{2} \) |
| 43 | \( 1 + 4.79iT - 43T^{2} \) |
| 47 | \( 1 + (2.51 - 4.34i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.499 + 0.864i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.36 + 0.785i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.40 + 5.90i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.05 + 1.76i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 14.3iT - 71T^{2} \) |
| 73 | \( 1 + (-2.76 + 1.59i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.239 - 0.414i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 17.4iT - 83T^{2} \) |
| 89 | \( 1 + (-2.54 + 4.41i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 9.00iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.06184779044745487196500673411, −12.30755213175570381997785737226, −11.29284068373055175806778196402, −9.427914396327494359059316020086, −8.411852968014419067716508023808, −7.88756967181435679821969597360, −6.44671677562867397671723077230, −5.71353656411123395638906381090, −3.99175898905261210996230515162, −2.43401401642573580471252798073,
2.01204065205952192747816406954, 3.73653766108167827150187749057, 4.48311518166199324488276551382, 5.83690754241104142686159390298, 7.68779094598316587303878462038, 8.929749721887275897312341524218, 9.799869400436738809930094962868, 10.87267836071858866350301473627, 11.26734029236166023118629178524, 13.05544679212223144781047519927