L(s) = 1 | + (−2.24 − 1.72i)2-s + (1.04 − 5.08i)3-s + (2.04 + 7.73i)4-s + 3.71i·5-s + (−11.1 + 9.59i)6-s + (15.6 + 9.97i)7-s + (8.78 − 20.8i)8-s + (−24.8 − 10.6i)9-s + (6.40 − 8.31i)10-s − 48.1·11-s + (41.5 − 2.27i)12-s − 69.5·13-s + (−17.7 − 49.2i)14-s + (18.8 + 3.89i)15-s + (−55.6 + 31.5i)16-s − 48.9·17-s + ⋯ |
L(s) = 1 | + (−0.792 − 0.610i)2-s + (0.201 − 0.979i)3-s + (0.255 + 0.966i)4-s + 0.332i·5-s + (−0.757 + 0.652i)6-s + (0.842 + 0.538i)7-s + (0.388 − 0.921i)8-s + (−0.918 − 0.395i)9-s + (0.202 − 0.263i)10-s − 1.31·11-s + (0.998 − 0.0546i)12-s − 1.48·13-s + (−0.338 − 0.940i)14-s + (0.325 + 0.0670i)15-s + (−0.869 + 0.493i)16-s − 0.697·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.389 - 0.920i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.389 - 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0247890 + 0.0374147i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0247890 + 0.0374147i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.24 + 1.72i)T \) |
| 3 | \( 1 + (-1.04 + 5.08i)T \) |
| 7 | \( 1 + (-15.6 - 9.97i)T \) |
good | 5 | \( 1 - 3.71iT - 125T^{2} \) |
| 11 | \( 1 + 48.1T + 1.33e3T^{2} \) |
| 13 | \( 1 + 69.5T + 2.19e3T^{2} \) |
| 17 | \( 1 + 48.9T + 4.91e3T^{2} \) |
| 19 | \( 1 + 62.2T + 6.85e3T^{2} \) |
| 23 | \( 1 - 63.4iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 20.2T + 2.43e4T^{2} \) |
| 31 | \( 1 + 77.3iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 151. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 284.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 441. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 615.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 129.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 406. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 576.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 665. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 129. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 290. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 130.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 763. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 269.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.37e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.56212789588671738960249288790, −11.57967358267832207144601421805, −10.80885610323475760343308582252, −9.573845869823800315465549176860, −8.365095806264125442383752262258, −7.75107185212278168997123216970, −6.72312645780052523704946493953, −4.99339290380930648158078738457, −2.80493188585368539262322982454, −1.98717401680132640996237198723,
0.02379348270174148272291994593, 2.37005421435984611201042725652, 4.68889575335567080442104267801, 5.19063625301567308162710770735, 6.98337219649159407748436649527, 8.137876860277663915837452100977, 8.776617777943789183486325946026, 10.16547589977507235563097377317, 10.48659868926033934694672054612, 11.63347682155594164264196601749