L(s) = 1 | + (0.819 − 1.15i)2-s + (1.03 + 1.38i)3-s + (−0.656 − 1.88i)4-s + (0.692 + 1.19i)5-s + (2.44 − 0.0625i)6-s + (2.08 + 1.62i)7-s + (−2.71 − 0.791i)8-s + (−0.839 + 2.88i)9-s + (1.94 + 0.184i)10-s + (−3.82 − 2.20i)11-s + (1.93 − 2.87i)12-s − 6.43i·13-s + (3.58 − 1.07i)14-s + (−0.941 + 2.20i)15-s + (−3.13 + 2.48i)16-s + (−2.52 − 1.45i)17-s + ⋯ |
L(s) = 1 | + (0.579 − 0.814i)2-s + (0.600 + 0.799i)3-s + (−0.328 − 0.944i)4-s + (0.309 + 0.536i)5-s + (0.999 − 0.0255i)6-s + (0.789 + 0.613i)7-s + (−0.960 − 0.279i)8-s + (−0.279 + 0.960i)9-s + (0.616 + 0.0584i)10-s + (−1.15 − 0.665i)11-s + (0.558 − 0.829i)12-s − 1.78i·13-s + (0.957 − 0.287i)14-s + (−0.243 + 0.569i)15-s + (−0.784 + 0.620i)16-s + (−0.613 − 0.354i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.934 + 0.356i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.934 + 0.356i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.72761 - 0.318100i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72761 - 0.318100i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.819 + 1.15i)T \) |
| 3 | \( 1 + (-1.03 - 1.38i)T \) |
| 7 | \( 1 + (-2.08 - 1.62i)T \) |
good | 5 | \( 1 + (-0.692 - 1.19i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3.82 + 2.20i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 6.43iT - 13T^{2} \) |
| 17 | \( 1 + (2.52 + 1.45i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.58 - 2.75i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.84 - 3.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 6.67T + 29T^{2} \) |
| 31 | \( 1 + (-2.17 - 1.25i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.00 - 2.88i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 0.497iT - 41T^{2} \) |
| 43 | \( 1 - 0.865T + 43T^{2} \) |
| 47 | \( 1 + (-1.59 - 2.75i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.12 + 7.15i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.62 - 3.82i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.99 + 1.72i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.36 - 5.83i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.90T + 71T^{2} \) |
| 73 | \( 1 + (-3.23 + 5.60i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.65 + 0.953i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.00iT - 83T^{2} \) |
| 89 | \( 1 + (-8.22 + 4.75i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 1.19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.93347033278821770536279831392, −11.51961367118350984386069213677, −10.65800531536094275337236117426, −10.12977427651316714365213228866, −8.836956016452668811536841769521, −7.85957531636010036724587735675, −5.66184384398357837923769035754, −5.07557816564391199650956324322, −3.34894706046395306238535621943, −2.45776682557778957994718715084,
2.15575844107689154384793024393, 4.14204244743904919230990113874, 5.21625462379649671697834150294, 6.79776713102920551275777684169, 7.43365618459036817202302502156, 8.545446668852573607565445294740, 9.330857403114970215463095814198, 11.16515418187029125935942099258, 12.27076368564128719179593734067, 13.20412555492286271405957234752