L(s) = 1 | + (−0.0857 + 1.41i)2-s + (−0.528 − 1.64i)3-s + (−1.98 − 0.242i)4-s + (−2.66 + 1.54i)5-s + (2.37 − 0.604i)6-s + (−1.46 + 2.20i)7-s + (0.511 − 2.78i)8-s + (−2.44 + 1.74i)9-s + (−1.94 − 3.89i)10-s + (0.621 − 1.07i)11-s + (0.650 + 3.40i)12-s − 5.98·13-s + (−2.98 − 2.25i)14-s + (3.95 + 3.58i)15-s + (3.88 + 0.960i)16-s + (−0.595 + 1.03i)17-s + ⋯ |
L(s) = 1 | + (−0.0606 + 0.998i)2-s + (−0.305 − 0.952i)3-s + (−0.992 − 0.121i)4-s + (−1.19 + 0.688i)5-s + (0.969 − 0.246i)6-s + (−0.552 + 0.833i)7-s + (0.180 − 0.983i)8-s + (−0.813 + 0.581i)9-s + (−0.615 − 1.23i)10-s + (0.187 − 0.324i)11-s + (0.187 + 0.982i)12-s − 1.66·13-s + (−0.798 − 0.602i)14-s + (1.02 + 0.926i)15-s + (0.970 + 0.240i)16-s + (−0.144 + 0.250i)17-s + ⋯ |
Λ(s)=(=(168s/2ΓC(s)L(s)(−0.981+0.191i)Λ(2−s)
Λ(s)=(=(168s/2ΓC(s+1/2)L(s)(−0.981+0.191i)Λ(1−s)
Degree: |
2 |
Conductor: |
168
= 23⋅3⋅7
|
Sign: |
−0.981+0.191i
|
Analytic conductor: |
1.34148 |
Root analytic conductor: |
1.15822 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ168(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 168, ( :1/2), −0.981+0.191i)
|
Particular Values
L(1) |
≈ |
0.0214386−0.221990i |
L(21) |
≈ |
0.0214386−0.221990i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0857−1.41i)T |
| 3 | 1+(0.528+1.64i)T |
| 7 | 1+(1.46−2.20i)T |
good | 5 | 1+(2.66−1.54i)T+(2.5−4.33i)T2 |
| 11 | 1+(−0.621+1.07i)T+(−5.5−9.52i)T2 |
| 13 | 1+5.98T+13T2 |
| 17 | 1+(0.595−1.03i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.614−1.06i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−2.56+1.48i)T+(11.5−19.9i)T2 |
| 29 | 1−3.19T+29T2 |
| 31 | 1+(−1.33−0.773i)T+(15.5+26.8i)T2 |
| 37 | 1+(0.334−0.193i)T+(18.5−32.0i)T2 |
| 41 | 1+9.44T+41T2 |
| 43 | 1−8.29iT−43T2 |
| 47 | 1+(3.34+5.78i)T+(−23.5+40.7i)T2 |
| 53 | 1+(5.25−9.09i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−3.22−1.86i)T+(29.5+51.0i)T2 |
| 61 | 1+(−3.16−5.48i)T+(−30.5+52.8i)T2 |
| 67 | 1+(10.7+6.19i)T+(33.5+58.0i)T2 |
| 71 | 1−6.21iT−71T2 |
| 73 | 1+(8.92+5.15i)T+(36.5+63.2i)T2 |
| 79 | 1+(6.41+11.1i)T+(−39.5+68.4i)T2 |
| 83 | 1+5.22iT−83T2 |
| 89 | 1+(−6.94−12.0i)T+(−44.5+77.0i)T2 |
| 97 | 1−17.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.31276780185500085030908130235, −12.30122135169566467170152536440, −11.73082946626220198263681322418, −10.26021057681136849594348847931, −8.859090092491976944593210943668, −7.86234427629538080914625420167, −7.06982031578713079564357082532, −6.23235860231301797372988878395, −4.89484806556720266290288042913, −3.05003783288679874829893440389,
0.21611288555846807522497819688, 3.21952884876913770188689905278, 4.34889365175874021826775475584, 4.99545867796691038143973107068, 7.20723516849391404115894213159, 8.483859296318725864888801852752, 9.585564281724804435994711780840, 10.21028578781072586695561495444, 11.39113439213581959178795933644, 12.03384903822452681761342717610