L(s) = 1 | + (−0.0857 + 1.41i)2-s + (−0.528 − 1.64i)3-s + (−1.98 − 0.242i)4-s + (−2.66 + 1.54i)5-s + (2.37 − 0.604i)6-s + (−1.46 + 2.20i)7-s + (0.511 − 2.78i)8-s + (−2.44 + 1.74i)9-s + (−1.94 − 3.89i)10-s + (0.621 − 1.07i)11-s + (0.650 + 3.40i)12-s − 5.98·13-s + (−2.98 − 2.25i)14-s + (3.95 + 3.58i)15-s + (3.88 + 0.960i)16-s + (−0.595 + 1.03i)17-s + ⋯ |
L(s) = 1 | + (−0.0606 + 0.998i)2-s + (−0.305 − 0.952i)3-s + (−0.992 − 0.121i)4-s + (−1.19 + 0.688i)5-s + (0.969 − 0.246i)6-s + (−0.552 + 0.833i)7-s + (0.180 − 0.983i)8-s + (−0.813 + 0.581i)9-s + (−0.615 − 1.23i)10-s + (0.187 − 0.324i)11-s + (0.187 + 0.982i)12-s − 1.66·13-s + (−0.798 − 0.602i)14-s + (1.02 + 0.926i)15-s + (0.970 + 0.240i)16-s + (−0.144 + 0.250i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 + 0.191i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.981 + 0.191i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0214386 - 0.221990i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0214386 - 0.221990i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0857 - 1.41i)T \) |
| 3 | \( 1 + (0.528 + 1.64i)T \) |
| 7 | \( 1 + (1.46 - 2.20i)T \) |
good | 5 | \( 1 + (2.66 - 1.54i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.621 + 1.07i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 5.98T + 13T^{2} \) |
| 17 | \( 1 + (0.595 - 1.03i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.614 - 1.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.56 + 1.48i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 3.19T + 29T^{2} \) |
| 31 | \( 1 + (-1.33 - 0.773i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.334 - 0.193i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 9.44T + 41T^{2} \) |
| 43 | \( 1 - 8.29iT - 43T^{2} \) |
| 47 | \( 1 + (3.34 + 5.78i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.25 - 9.09i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.22 - 1.86i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.16 - 5.48i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.7 + 6.19i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.21iT - 71T^{2} \) |
| 73 | \( 1 + (8.92 + 5.15i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.41 + 11.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 5.22iT - 83T^{2} \) |
| 89 | \( 1 + (-6.94 - 12.0i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 17.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.31276780185500085030908130235, −12.30122135169566467170152536440, −11.73082946626220198263681322418, −10.26021057681136849594348847931, −8.859090092491976944593210943668, −7.86234427629538080914625420167, −7.06982031578713079564357082532, −6.23235860231301797372988878395, −4.89484806556720266290288042913, −3.05003783288679874829893440389,
0.21611288555846807522497819688, 3.21952884876913770188689905278, 4.34889365175874021826775475584, 4.99545867796691038143973107068, 7.20723516849391404115894213159, 8.483859296318725864888801852752, 9.585564281724804435994711780840, 10.21028578781072586695561495444, 11.39113439213581959178795933644, 12.03384903822452681761342717610