Properties

Label 2-165-1.1-c5-0-31
Degree $2$
Conductor $165$
Sign $-1$
Analytic cond. $26.4633$
Root an. cond. $5.14425$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.52·2-s + 9·3-s + 24.6·4-s − 25·5-s + 67.7·6-s − 234.·7-s − 55.3·8-s + 81·9-s − 188.·10-s + 121·11-s + 221.·12-s + 236.·13-s − 1.76e3·14-s − 225·15-s − 1.20e3·16-s − 608.·17-s + 609.·18-s − 1.79e3·19-s − 616.·20-s − 2.10e3·21-s + 910.·22-s − 4.77e3·23-s − 498.·24-s + 625·25-s + 1.77e3·26-s + 729·27-s − 5.76e3·28-s + ⋯
L(s)  = 1  + 1.33·2-s + 0.577·3-s + 0.770·4-s − 0.447·5-s + 0.768·6-s − 1.80·7-s − 0.305·8-s + 0.333·9-s − 0.594·10-s + 0.301·11-s + 0.444·12-s + 0.387·13-s − 2.40·14-s − 0.258·15-s − 1.17·16-s − 0.510·17-s + 0.443·18-s − 1.14·19-s − 0.344·20-s − 1.04·21-s + 0.401·22-s − 1.88·23-s − 0.176·24-s + 0.200·25-s + 0.515·26-s + 0.192·27-s − 1.39·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(165\)    =    \(3 \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(26.4633\)
Root analytic conductor: \(5.14425\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 165,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
5 \( 1 + 25T \)
11 \( 1 - 121T \)
good2 \( 1 - 7.52T + 32T^{2} \)
7 \( 1 + 234.T + 1.68e4T^{2} \)
13 \( 1 - 236.T + 3.71e5T^{2} \)
17 \( 1 + 608.T + 1.41e6T^{2} \)
19 \( 1 + 1.79e3T + 2.47e6T^{2} \)
23 \( 1 + 4.77e3T + 6.43e6T^{2} \)
29 \( 1 - 2.80e3T + 2.05e7T^{2} \)
31 \( 1 - 1.02e4T + 2.86e7T^{2} \)
37 \( 1 + 7.62e3T + 6.93e7T^{2} \)
41 \( 1 - 8.35e3T + 1.15e8T^{2} \)
43 \( 1 + 1.19e4T + 1.47e8T^{2} \)
47 \( 1 - 8.38e3T + 2.29e8T^{2} \)
53 \( 1 - 3.45e3T + 4.18e8T^{2} \)
59 \( 1 + 5.10e4T + 7.14e8T^{2} \)
61 \( 1 - 9.98e3T + 8.44e8T^{2} \)
67 \( 1 + 3.65e4T + 1.35e9T^{2} \)
71 \( 1 + 3.05e4T + 1.80e9T^{2} \)
73 \( 1 - 8.38e4T + 2.07e9T^{2} \)
79 \( 1 - 1.03e5T + 3.07e9T^{2} \)
83 \( 1 + 4.34e3T + 3.93e9T^{2} \)
89 \( 1 + 4.54e4T + 5.58e9T^{2} \)
97 \( 1 + 1.83e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.02877356937638650620117121053, −10.45728332715078813167465920634, −9.390463505813236589480313996394, −8.334723813427079207734442182447, −6.65570257910159012740639350911, −6.15650676064698743725429505115, −4.36323270705408538979636450099, −3.60938486706975797715607150314, −2.56966967452185228844934593381, 0, 2.56966967452185228844934593381, 3.60938486706975797715607150314, 4.36323270705408538979636450099, 6.15650676064698743725429505115, 6.65570257910159012740639350911, 8.334723813427079207734442182447, 9.390463505813236589480313996394, 10.45728332715078813167465920634, 12.02877356937638650620117121053

Graph of the $Z$-function along the critical line