L(s) = 1 | − 2.32·2-s − 3·3-s − 2.57·4-s − 5·5-s + 6.98·6-s + 22.4·7-s + 24.6·8-s + 9·9-s + 11.6·10-s + 11·11-s + 7.72·12-s − 9.86·13-s − 52.3·14-s + 15·15-s − 36.7·16-s − 128.·17-s − 20.9·18-s + 7.04·19-s + 12.8·20-s − 67.4·21-s − 25.6·22-s + 0.654·23-s − 73.8·24-s + 25·25-s + 22.9·26-s − 27·27-s − 57.8·28-s + ⋯ |
L(s) = 1 | − 0.823·2-s − 0.577·3-s − 0.321·4-s − 0.447·5-s + 0.475·6-s + 1.21·7-s + 1.08·8-s + 0.333·9-s + 0.368·10-s + 0.301·11-s + 0.185·12-s − 0.210·13-s − 0.998·14-s + 0.258·15-s − 0.574·16-s − 1.82·17-s − 0.274·18-s + 0.0850·19-s + 0.143·20-s − 0.700·21-s − 0.248·22-s + 0.00593·23-s − 0.628·24-s + 0.200·25-s + 0.173·26-s − 0.192·27-s − 0.390·28-s + ⋯ |
Λ(s)=(=(165s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(165s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1+5T |
| 11 | 1−11T |
good | 2 | 1+2.32T+8T2 |
| 7 | 1−22.4T+343T2 |
| 13 | 1+9.86T+2.19e3T2 |
| 17 | 1+128.T+4.91e3T2 |
| 19 | 1−7.04T+6.85e3T2 |
| 23 | 1−0.654T+1.21e4T2 |
| 29 | 1+229.T+2.43e4T2 |
| 31 | 1−155.T+2.97e4T2 |
| 37 | 1+110.T+5.06e4T2 |
| 41 | 1−154.T+6.89e4T2 |
| 43 | 1+401.T+7.95e4T2 |
| 47 | 1+277.T+1.03e5T2 |
| 53 | 1+651.T+1.48e5T2 |
| 59 | 1+423.T+2.05e5T2 |
| 61 | 1−681.T+2.26e5T2 |
| 67 | 1−374.T+3.00e5T2 |
| 71 | 1−96.6T+3.57e5T2 |
| 73 | 1+19.9T+3.89e5T2 |
| 79 | 1−24.4T+4.93e5T2 |
| 83 | 1+1.12e3T+5.71e5T2 |
| 89 | 1+639.T+7.04e5T2 |
| 97 | 1+730.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38396107918053199134896155671, −11.06426070673374402137520530015, −9.784012941071971075327506411725, −8.712145943629755070877300170293, −7.901200733731107632500869835234, −6.78837948449091974826726938817, −5.05832509076758630826783281233, −4.23912785895003769931341466511, −1.66260061704225131346789765018, 0,
1.66260061704225131346789765018, 4.23912785895003769931341466511, 5.05832509076758630826783281233, 6.78837948449091974826726938817, 7.901200733731107632500869835234, 8.712145943629755070877300170293, 9.784012941071971075327506411725, 11.06426070673374402137520530015, 11.38396107918053199134896155671