L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + 3.05i·5-s + (0.866 − 0.5i)7-s − 0.999i·8-s + (1.52 − 2.64i)10-s + (2.98 + 1.72i)11-s + (3.25 + 1.55i)13-s − 0.999·14-s + (−0.5 + 0.866i)16-s + (1.41 + 2.44i)17-s + (1.49 − 0.862i)19-s + (−2.64 + 1.52i)20-s + (−1.72 − 2.98i)22-s + (−1.53 + 2.65i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + 1.36i·5-s + (0.327 − 0.188i)7-s − 0.353i·8-s + (0.483 − 0.836i)10-s + (0.898 + 0.518i)11-s + (0.902 + 0.431i)13-s − 0.267·14-s + (−0.125 + 0.216i)16-s + (0.343 + 0.594i)17-s + (0.342 − 0.197i)19-s + (−0.591 + 0.341i)20-s + (−0.366 − 0.635i)22-s + (−0.319 + 0.553i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.419−0.907i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.419−0.907i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.419−0.907i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(1135,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.419−0.907i)
|
Particular Values
L(1) |
≈ |
1.425845836 |
L(21) |
≈ |
1.425845836 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1 |
| 7 | 1+(−0.866+0.5i)T |
| 13 | 1+(−3.25−1.55i)T |
good | 5 | 1−3.05iT−5T2 |
| 11 | 1+(−2.98−1.72i)T+(5.5+9.52i)T2 |
| 17 | 1+(−1.41−2.44i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.49+0.862i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.53−2.65i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.92+3.33i)T+(−14.5−25.1i)T2 |
| 31 | 1+0.978iT−31T2 |
| 37 | 1+(−4.58−2.64i)T+(18.5+32.0i)T2 |
| 41 | 1+(8.62+4.98i)T+(20.5+35.5i)T2 |
| 43 | 1+(1.51+2.61i)T+(−21.5+37.2i)T2 |
| 47 | 1+8.04iT−47T2 |
| 53 | 1−8.33T+53T2 |
| 59 | 1+(8.64−4.98i)T+(29.5−51.0i)T2 |
| 61 | 1+(−5.77−9.99i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4.11−2.37i)T+(33.5+58.0i)T2 |
| 71 | 1+(−3.17+1.83i)T+(35.5−61.4i)T2 |
| 73 | 1−10.1iT−73T2 |
| 79 | 1+4.49T+79T2 |
| 83 | 1+7.15iT−83T2 |
| 89 | 1+(−6.84−3.95i)T+(44.5+77.0i)T2 |
| 97 | 1+(7.88−4.54i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.683748998090173868128419899773, −8.760408771434545661768903707342, −7.988765963411748305367563121158, −7.04081775513868856248831005029, −6.65073504214617368971132776691, −5.65450961735001072895215586486, −4.11920407765746561208177629165, −3.54134925062431481919316179599, −2.38585235550915691570208566319, −1.34799780408921185919779561263,
0.78667043121624930673587442428, 1.56985367691734936039870427237, 3.21325326088267648399852447054, 4.40473692229841694767368298466, 5.23708621441581528634199363297, 5.98871710116246763032637161638, 6.83460779957128155255915626031, 8.108657602204317950577141389559, 8.319904115835358225297619111674, 9.169371347876956374465194817525