L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + 4.11i·5-s + (−0.866 − 0.5i)7-s + 0.999i·8-s + (−2.05 − 3.56i)10-s + (5.41 − 3.12i)11-s + (1.33 − 3.34i)13-s + 0.999·14-s + (−0.5 − 0.866i)16-s + (2.23 − 3.86i)17-s + (−2.94 − 1.70i)19-s + (3.56 + 2.05i)20-s + (−3.12 + 5.41i)22-s + (−1.49 − 2.58i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 1.84i·5-s + (−0.327 − 0.188i)7-s + 0.353i·8-s + (−0.651 − 1.12i)10-s + (1.63 − 0.942i)11-s + (0.371 − 0.928i)13-s + 0.267·14-s + (−0.125 − 0.216i)16-s + (0.541 − 0.938i)17-s + (−0.675 − 0.390i)19-s + (0.797 + 0.460i)20-s + (−0.666 + 1.15i)22-s + (−0.311 − 0.539i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.383i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.923 + 0.383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.110267906\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.110267906\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-1.33 + 3.34i)T \) |
good | 5 | \( 1 - 4.11iT - 5T^{2} \) |
| 11 | \( 1 + (-5.41 + 3.12i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.23 + 3.86i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.94 + 1.70i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.49 + 2.58i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.51 + 4.35i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 10.7iT - 31T^{2} \) |
| 37 | \( 1 + (-3.52 + 2.03i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5.96 - 3.44i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.83 - 3.17i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 9.29iT - 47T^{2} \) |
| 53 | \( 1 - 1.32T + 53T^{2} \) |
| 59 | \( 1 + (-2.81 - 1.62i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.550 - 0.953i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.360 + 0.208i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-13.1 - 7.61i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 11.7iT - 73T^{2} \) |
| 79 | \( 1 - 1.31T + 79T^{2} \) |
| 83 | \( 1 + 8.04iT - 83T^{2} \) |
| 89 | \( 1 + (8.60 - 4.96i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (10.5 + 6.07i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.532709239073225586928136273249, −8.432761849569828953929751523503, −7.67833455598890971352795063347, −6.85377869684081747328917692489, −6.31248416180033278478115554253, −5.75353791518343012983356947254, −4.01269597838947612820567713090, −3.26399926745146487215483505997, −2.30870770245819443981073822885, −0.56128592125252866826662667249,
1.39958233187838781177203090678, 1.68243821042084537098837174117, 3.70141404359133002302889539655, 4.22903852715136845753321174626, 5.24399175902788642328552978285, 6.31278656965280178936248882938, 7.06760343098430974736637467441, 8.319607208153126650979382619925, 8.673360464868108279538611960780, 9.432977419635513497496273459163