L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + 4.11i·5-s + (−0.866 − 0.5i)7-s + 0.999i·8-s + (−2.05 − 3.56i)10-s + (5.41 − 3.12i)11-s + (1.33 − 3.34i)13-s + 0.999·14-s + (−0.5 − 0.866i)16-s + (2.23 − 3.86i)17-s + (−2.94 − 1.70i)19-s + (3.56 + 2.05i)20-s + (−3.12 + 5.41i)22-s + (−1.49 − 2.58i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 1.84i·5-s + (−0.327 − 0.188i)7-s + 0.353i·8-s + (−0.651 − 1.12i)10-s + (1.63 − 0.942i)11-s + (0.371 − 0.928i)13-s + 0.267·14-s + (−0.125 − 0.216i)16-s + (0.541 − 0.938i)17-s + (−0.675 − 0.390i)19-s + (0.797 + 0.460i)20-s + (−0.666 + 1.15i)22-s + (−0.311 − 0.539i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.923+0.383i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.923+0.383i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.923+0.383i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.923+0.383i)
|
Particular Values
L(1) |
≈ |
1.110267906 |
L(21) |
≈ |
1.110267906 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1+(−1.33+3.34i)T |
good | 5 | 1−4.11iT−5T2 |
| 11 | 1+(−5.41+3.12i)T+(5.5−9.52i)T2 |
| 17 | 1+(−2.23+3.86i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.94+1.70i)T+(9.5+16.4i)T2 |
| 23 | 1+(1.49+2.58i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.51+4.35i)T+(−14.5+25.1i)T2 |
| 31 | 1+10.7iT−31T2 |
| 37 | 1+(−3.52+2.03i)T+(18.5−32.0i)T2 |
| 41 | 1+(5.96−3.44i)T+(20.5−35.5i)T2 |
| 43 | 1+(1.83−3.17i)T+(−21.5−37.2i)T2 |
| 47 | 1+9.29iT−47T2 |
| 53 | 1−1.32T+53T2 |
| 59 | 1+(−2.81−1.62i)T+(29.5+51.0i)T2 |
| 61 | 1+(0.550−0.953i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.360+0.208i)T+(33.5−58.0i)T2 |
| 71 | 1+(−13.1−7.61i)T+(35.5+61.4i)T2 |
| 73 | 1+11.7iT−73T2 |
| 79 | 1−1.31T+79T2 |
| 83 | 1+8.04iT−83T2 |
| 89 | 1+(8.60−4.96i)T+(44.5−77.0i)T2 |
| 97 | 1+(10.5+6.07i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.532709239073225586928136273249, −8.432761849569828953929751523503, −7.67833455598890971352795063347, −6.85377869684081747328917692489, −6.31248416180033278478115554253, −5.75353791518343012983356947254, −4.01269597838947612820567713090, −3.26399926745146487215483505997, −2.30870770245819443981073822885, −0.56128592125252866826662667249,
1.39958233187838781177203090678, 1.68243821042084537098837174117, 3.70141404359133002302889539655, 4.22903852715136845753321174626, 5.24399175902788642328552978285, 6.31278656965280178936248882938, 7.06760343098430974736637467441, 8.319607208153126650979382619925, 8.673360464868108279538611960780, 9.432977419635513497496273459163