Properties

Label 2-1638-13.10-c1-0-25
Degree 22
Conductor 16381638
Sign 0.287+0.957i0.287 + 0.957i
Analytic cond. 13.079413.0794
Root an. cond. 3.616553.61655
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s − 1.25i·5-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (0.627 + 1.08i)10-s + (4.35 − 2.51i)11-s + (−3.43 + 1.08i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (2.26 − 3.91i)17-s + (−3.05 − 1.76i)19-s + (−1.08 − 0.627i)20-s + (−2.51 + 4.35i)22-s + (−2.56 − 4.44i)23-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s − 0.561i·5-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (0.198 + 0.343i)10-s + (1.31 − 0.757i)11-s + (−0.953 + 0.299i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (0.548 − 0.949i)17-s + (−0.700 − 0.404i)19-s + (−0.243 − 0.140i)20-s + (−0.535 + 0.928i)22-s + (−0.535 − 0.927i)23-s + ⋯

Functional equation

Λ(s)=(1638s/2ΓC(s)L(s)=((0.287+0.957i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.287 + 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1638s/2ΓC(s+1/2)L(s)=((0.287+0.957i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.287 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 16381638    =    2327132 \cdot 3^{2} \cdot 7 \cdot 13
Sign: 0.287+0.957i0.287 + 0.957i
Analytic conductor: 13.079413.0794
Root analytic conductor: 3.616553.61655
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1638(127,)\chi_{1638} (127, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1638, ( :1/2), 0.287+0.957i)(2,\ 1638,\ (\ :1/2),\ 0.287 + 0.957i)

Particular Values

L(1)L(1) \approx 1.1244234921.124423492
L(12)L(\frac12) \approx 1.1244234921.124423492
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
3 1 1
7 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
13 1+(3.431.08i)T 1 + (3.43 - 1.08i)T
good5 1+1.25iT5T2 1 + 1.25iT - 5T^{2}
11 1+(4.35+2.51i)T+(5.59.52i)T2 1 + (-4.35 + 2.51i)T + (5.5 - 9.52i)T^{2}
17 1+(2.26+3.91i)T+(8.514.7i)T2 1 + (-2.26 + 3.91i)T + (-8.5 - 14.7i)T^{2}
19 1+(3.05+1.76i)T+(9.5+16.4i)T2 1 + (3.05 + 1.76i)T + (9.5 + 16.4i)T^{2}
23 1+(2.56+4.44i)T+(11.5+19.9i)T2 1 + (2.56 + 4.44i)T + (-11.5 + 19.9i)T^{2}
29 1+(0.7651.32i)T+(14.5+25.1i)T2 1 + (-0.765 - 1.32i)T + (-14.5 + 25.1i)T^{2}
31 1+0.439iT31T2 1 + 0.439iT - 31T^{2}
37 1+(8.905.13i)T+(18.532.0i)T2 1 + (8.90 - 5.13i)T + (18.5 - 32.0i)T^{2}
41 1+(8.65+4.99i)T+(20.535.5i)T2 1 + (-8.65 + 4.99i)T + (20.5 - 35.5i)T^{2}
43 1+(1.833.17i)T+(21.537.2i)T2 1 + (1.83 - 3.17i)T + (-21.5 - 37.2i)T^{2}
47 13.60iT47T2 1 - 3.60iT - 47T^{2}
53 1+8.82T+53T2 1 + 8.82T + 53T^{2}
59 1+(0.5420.313i)T+(29.5+51.0i)T2 1 + (-0.542 - 0.313i)T + (29.5 + 51.0i)T^{2}
61 1+(4.49+7.79i)T+(30.552.8i)T2 1 + (-4.49 + 7.79i)T + (-30.5 - 52.8i)T^{2}
67 1+(6.40+3.69i)T+(33.558.0i)T2 1 + (-6.40 + 3.69i)T + (33.5 - 58.0i)T^{2}
71 1+(5.89+3.40i)T+(35.5+61.4i)T2 1 + (5.89 + 3.40i)T + (35.5 + 61.4i)T^{2}
73 1+11.5iT73T2 1 + 11.5iT - 73T^{2}
79 1+6.74T+79T2 1 + 6.74T + 79T^{2}
83 1+9.57iT83T2 1 + 9.57iT - 83T^{2}
89 1+(7.28+4.20i)T+(44.577.0i)T2 1 + (-7.28 + 4.20i)T + (44.5 - 77.0i)T^{2}
97 1+(2.43+1.40i)T+(48.5+84.0i)T2 1 + (2.43 + 1.40i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.042303568097802109442459921568, −8.624307915318552219475469459179, −7.71939991882906642577516743846, −6.82404768351502607700422487191, −6.17809075574567712304197797033, −5.07913960842831024193309362748, −4.43998190289900610182154746102, −3.05834199374618760865495683949, −1.78751009987588553996505260975, −0.56020374019418857421822118974, 1.37566802431133529661062055954, 2.31384888307251556914184640873, 3.57724943123462653509897394998, 4.28305775953619292799277699795, 5.53979410659511598123027094602, 6.59678534884718205820060887593, 7.21642504759040086178011827870, 7.977081832223158844724820017107, 8.815250495253581740176245987184, 9.699613058796789436255358358449

Graph of the ZZ-function along the critical line