L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + 0.332i·5-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (0.166 + 0.288i)10-s + (−2.26 + 1.30i)11-s + (3.41 − 1.16i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (1.94 − 3.36i)17-s + (4.85 + 2.80i)19-s + (0.288 + 0.166i)20-s + (−1.30 + 2.26i)22-s + (−2.10 − 3.64i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + 0.148i·5-s + (−0.327 − 0.188i)7-s − 0.353i·8-s + (0.0526 + 0.0911i)10-s + (−0.681 + 0.393i)11-s + (0.946 − 0.323i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (0.471 − 0.816i)17-s + (1.11 + 0.643i)19-s + (0.0644 + 0.0372i)20-s + (−0.278 + 0.481i)22-s + (−0.439 − 0.760i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.311 + 0.950i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.311 + 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.351053428\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.351053428\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-3.41 + 1.16i)T \) |
good | 5 | \( 1 - 0.332iT - 5T^{2} \) |
| 11 | \( 1 + (2.26 - 1.30i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.94 + 3.36i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.85 - 2.80i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.10 + 3.64i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.593 + 1.02i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.07iT - 31T^{2} \) |
| 37 | \( 1 + (-0.499 + 0.288i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.451 - 0.260i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.53 + 2.66i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 12.0iT - 47T^{2} \) |
| 53 | \( 1 - 9.71T + 53T^{2} \) |
| 59 | \( 1 + (9.07 + 5.23i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.71 - 6.44i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.3 + 5.96i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.818 - 0.472i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 4.66iT - 73T^{2} \) |
| 79 | \( 1 + 0.943T + 79T^{2} \) |
| 83 | \( 1 - 13.7iT - 83T^{2} \) |
| 89 | \( 1 + (2.92 - 1.69i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.03 + 2.90i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.467122341450245322681825679221, −8.367750895887518300530450217858, −7.54038928009900666139134357339, −6.74940014561860881513918390024, −5.77966528849822350646334928410, −5.15710476354905533571861542277, −4.04969479874292474326173540571, −3.23990902169170392037671910448, −2.30616552449167365414273615638, −0.819170151948762855511968623689,
1.33471838791788171415647508572, 2.89452496836120799673419166325, 3.54162698824933471898446459937, 4.66836609041800098213331958733, 5.53358998092128056145189061409, 6.14765154880555819688879936364, 7.07322499525216528596329389030, 7.88224074426394905918903894761, 8.668825064834070714053365438228, 9.377313244684780833146798927034