L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + 0.332i·5-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (0.166 + 0.288i)10-s + (−2.26 + 1.30i)11-s + (3.41 − 1.16i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (1.94 − 3.36i)17-s + (4.85 + 2.80i)19-s + (0.288 + 0.166i)20-s + (−1.30 + 2.26i)22-s + (−2.10 − 3.64i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + 0.148i·5-s + (−0.327 − 0.188i)7-s − 0.353i·8-s + (0.0526 + 0.0911i)10-s + (−0.681 + 0.393i)11-s + (0.946 − 0.323i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (0.471 − 0.816i)17-s + (1.11 + 0.643i)19-s + (0.0644 + 0.0372i)20-s + (−0.278 + 0.481i)22-s + (−0.439 − 0.760i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.311+0.950i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.311+0.950i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.311+0.950i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.311+0.950i)
|
Particular Values
L(1) |
≈ |
2.351053428 |
L(21) |
≈ |
2.351053428 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1 |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1+(−3.41+1.16i)T |
good | 5 | 1−0.332iT−5T2 |
| 11 | 1+(2.26−1.30i)T+(5.5−9.52i)T2 |
| 17 | 1+(−1.94+3.36i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−4.85−2.80i)T+(9.5+16.4i)T2 |
| 23 | 1+(2.10+3.64i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.593+1.02i)T+(−14.5+25.1i)T2 |
| 31 | 1+7.07iT−31T2 |
| 37 | 1+(−0.499+0.288i)T+(18.5−32.0i)T2 |
| 41 | 1+(0.451−0.260i)T+(20.5−35.5i)T2 |
| 43 | 1+(−1.53+2.66i)T+(−21.5−37.2i)T2 |
| 47 | 1+12.0iT−47T2 |
| 53 | 1−9.71T+53T2 |
| 59 | 1+(9.07+5.23i)T+(29.5+51.0i)T2 |
| 61 | 1+(3.71−6.44i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−10.3+5.96i)T+(33.5−58.0i)T2 |
| 71 | 1+(−0.818−0.472i)T+(35.5+61.4i)T2 |
| 73 | 1−4.66iT−73T2 |
| 79 | 1+0.943T+79T2 |
| 83 | 1−13.7iT−83T2 |
| 89 | 1+(2.92−1.69i)T+(44.5−77.0i)T2 |
| 97 | 1+(5.03+2.90i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.467122341450245322681825679221, −8.367750895887518300530450217858, −7.54038928009900666139134357339, −6.74940014561860881513918390024, −5.77966528849822350646334928410, −5.15710476354905533571861542277, −4.04969479874292474326173540571, −3.23990902169170392037671910448, −2.30616552449167365414273615638, −0.819170151948762855511968623689,
1.33471838791788171415647508572, 2.89452496836120799673419166325, 3.54162698824933471898446459937, 4.66836609041800098213331958733, 5.53358998092128056145189061409, 6.14765154880555819688879936364, 7.07322499525216528596329389030, 7.88224074426394905918903894761, 8.668825064834070714053365438228, 9.377313244684780833146798927034