L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + 1.56i·5-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (0.781 + 1.35i)10-s + (2.48 − 1.43i)11-s + (2.99 − 2.00i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (1.11 − 1.93i)17-s + (−6.26 − 3.61i)19-s + (1.35 + 0.781i)20-s + (1.43 − 2.48i)22-s + (0.833 + 1.44i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + 0.699i·5-s + (−0.327 − 0.188i)7-s − 0.353i·8-s + (0.247 + 0.428i)10-s + (0.748 − 0.432i)11-s + (0.830 − 0.556i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (0.270 − 0.468i)17-s + (−1.43 − 0.830i)19-s + (0.302 + 0.174i)20-s + (0.305 − 0.529i)22-s + (0.173 + 0.301i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.545+0.838i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.545+0.838i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.545+0.838i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.545+0.838i)
|
Particular Values
L(1) |
≈ |
2.483004035 |
L(21) |
≈ |
2.483004035 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1 |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1+(−2.99+2.00i)T |
good | 5 | 1−1.56iT−5T2 |
| 11 | 1+(−2.48+1.43i)T+(5.5−9.52i)T2 |
| 17 | 1+(−1.11+1.93i)T+(−8.5−14.7i)T2 |
| 19 | 1+(6.26+3.61i)T+(9.5+16.4i)T2 |
| 23 | 1+(−0.833−1.44i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.41−4.18i)T+(−14.5+25.1i)T2 |
| 31 | 1−0.597iT−31T2 |
| 37 | 1+(−0.0333+0.0192i)T+(18.5−32.0i)T2 |
| 41 | 1+(−6.88+3.97i)T+(20.5−35.5i)T2 |
| 43 | 1+(−5.04+8.73i)T+(−21.5−37.2i)T2 |
| 47 | 1−7.02iT−47T2 |
| 53 | 1−5.98T+53T2 |
| 59 | 1+(0.776+0.448i)T+(29.5+51.0i)T2 |
| 61 | 1+(−7.12+12.3i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.42−0.820i)T+(33.5−58.0i)T2 |
| 71 | 1+(−1.98−1.14i)T+(35.5+61.4i)T2 |
| 73 | 1+11.2iT−73T2 |
| 79 | 1−4.26T+79T2 |
| 83 | 1+4.94iT−83T2 |
| 89 | 1+(2.09−1.21i)T+(44.5−77.0i)T2 |
| 97 | 1+(4.23+2.44i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.229709581906116679830668668932, −8.649430865346620060428415471582, −7.43497358279463259086057394714, −6.64082985295823651550907442276, −6.11770329685873681563835628279, −5.08985064098628792087465970329, −4.00563555074576647604197488362, −3.30308087923947761213260794989, −2.39991897578885041132813792532, −0.884122202246548482612109342596,
1.32438888429897324348160615643, 2.57009290462463113762655907093, 4.05969386808096150298022597000, 4.23085033681988316625214423131, 5.51042994829537604547785030778, 6.27608401239095868569491536960, 6.81394036175540004407261590616, 8.037356086098102184663701297798, 8.607544936891610342749944323932, 9.325682861885630036064654778026