L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + 2.73i·5-s + (−0.866 − 0.5i)7-s + 0.999i·8-s + (−1.36 − 2.36i)10-s + (−1.5 + 0.866i)11-s + (−3.59 + 0.232i)13-s + 0.999·14-s + (−0.5 − 0.866i)16-s + (−0.133 + 0.232i)17-s + (−0.866 − 0.5i)19-s + (2.36 + 1.36i)20-s + (0.866 − 1.5i)22-s + (−1.73 − 3i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 1.22i·5-s + (−0.327 − 0.188i)7-s + 0.353i·8-s + (−0.431 − 0.748i)10-s + (−0.452 + 0.261i)11-s + (−0.997 + 0.0643i)13-s + 0.267·14-s + (−0.125 − 0.216i)16-s + (−0.0324 + 0.0562i)17-s + (−0.198 − 0.114i)19-s + (0.529 + 0.305i)20-s + (0.184 − 0.319i)22-s + (−0.361 − 0.625i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.0515+0.998i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.0515+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.0515+0.998i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.0515+0.998i)
|
Particular Values
L(1) |
≈ |
0.3037912322 |
L(21) |
≈ |
0.3037912322 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1+(3.59−0.232i)T |
good | 5 | 1−2.73iT−5T2 |
| 11 | 1+(1.5−0.866i)T+(5.5−9.52i)T2 |
| 17 | 1+(0.133−0.232i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.866+0.5i)T+(9.5+16.4i)T2 |
| 23 | 1+(1.73+3i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.232+0.401i)T+(−14.5+25.1i)T2 |
| 31 | 1+8.19iT−31T2 |
| 37 | 1+(2.83−1.63i)T+(18.5−32.0i)T2 |
| 41 | 1+(−2.59+1.5i)T+(20.5−35.5i)T2 |
| 43 | 1+(−3.36+5.83i)T+(−21.5−37.2i)T2 |
| 47 | 1−4.46iT−47T2 |
| 53 | 1+7T+53T2 |
| 59 | 1+(11.1+6.46i)T+(29.5+51.0i)T2 |
| 61 | 1+(−2.59+4.5i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−4.26+2.46i)T+(33.5−58.0i)T2 |
| 71 | 1+(−7.09−4.09i)T+(35.5+61.4i)T2 |
| 73 | 1−1.46iT−73T2 |
| 79 | 1−15.9T+79T2 |
| 83 | 1−10.1iT−83T2 |
| 89 | 1+(3.06−1.76i)T+(44.5−77.0i)T2 |
| 97 | 1+(−1.43−0.830i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.456446121383409796323187591175, −8.184006057328682855685433038098, −7.57776402313324679074127013781, −6.84061922299957008908848472846, −6.28088336786786603251600828170, −5.23590409029145978157722946742, −4.11825568629710228907554964164, −2.87819728676688643803261904369, −2.13941053305896401936935349682, −0.14828689520451778951719055200,
1.20931236325008293056005258602, 2.41310867188804024984334067339, 3.49525555904957893082338120066, 4.69257207666598838490961802242, 5.34070015264298279430265884688, 6.40829989080868768616117329519, 7.47281806995968213634845871003, 8.111190889429782803406423074805, 8.948583028908898092779748173376, 9.407970166554432703057398956086