L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + 0.901i·5-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (−0.450 − 0.781i)10-s + (3.75 − 2.16i)11-s + (−0.426 − 3.58i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (−2.53 + 4.38i)17-s + (5.34 + 3.08i)19-s + (0.781 + 0.450i)20-s + (−2.16 + 3.75i)22-s + (−4.22 − 7.31i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 0.403i·5-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (−0.142 − 0.246i)10-s + (1.13 − 0.653i)11-s + (−0.118 − 0.992i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (−0.614 + 1.06i)17-s + (1.22 + 0.708i)19-s + (0.174 + 0.100i)20-s + (−0.462 + 0.800i)22-s + (−0.881 − 1.52i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.105i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 - 0.105i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.387551326\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.387551326\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (0.426 + 3.58i)T \) |
good | 5 | \( 1 - 0.901iT - 5T^{2} \) |
| 11 | \( 1 + (-3.75 + 2.16i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2.53 - 4.38i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.34 - 3.08i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.22 + 7.31i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.09 + 1.89i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 0.873iT - 31T^{2} \) |
| 37 | \( 1 + (-0.124 + 0.0721i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.46 + 1.99i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.85 + 6.67i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 2.92iT - 47T^{2} \) |
| 53 | \( 1 + 1.69T + 53T^{2} \) |
| 59 | \( 1 + (-7.40 - 4.27i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.16 - 7.21i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.99 - 5.19i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.83 - 1.63i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 0.539iT - 73T^{2} \) |
| 79 | \( 1 - 6.53T + 79T^{2} \) |
| 83 | \( 1 + 13.2iT - 83T^{2} \) |
| 89 | \( 1 + (-6.74 + 3.89i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-10.1 - 5.85i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.193650114727170519840168576555, −8.591441250887337449988616805023, −7.916731067416108357431290060827, −7.05829557173326216903647603756, −6.14701539415968648002954986691, −5.67877965827264367883147574496, −4.37120304835677143173640720982, −3.36485186679785775082858627651, −2.16079708030022018615363977058, −0.842534623739461893395076219275,
1.05992034725063246260820329733, 1.99903119263241178157146622856, 3.29634391080080342716618316358, 4.36811206288394672459834353553, 5.03735024868166052596681010909, 6.38265313561375339385787752714, 7.17478549824857992082557148038, 7.70932413740074769062901828798, 8.924328192734130654379720938683, 9.364754563557655780406274091985