L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + 0.901i·5-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (−0.450 − 0.781i)10-s + (3.75 − 2.16i)11-s + (−0.426 − 3.58i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (−2.53 + 4.38i)17-s + (5.34 + 3.08i)19-s + (0.781 + 0.450i)20-s + (−2.16 + 3.75i)22-s + (−4.22 − 7.31i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 0.403i·5-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (−0.142 − 0.246i)10-s + (1.13 − 0.653i)11-s + (−0.118 − 0.992i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (−0.614 + 1.06i)17-s + (1.22 + 0.708i)19-s + (0.174 + 0.100i)20-s + (−0.462 + 0.800i)22-s + (−0.881 − 1.52i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.994−0.105i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.994−0.105i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.994−0.105i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.994−0.105i)
|
Particular Values
L(1) |
≈ |
1.387551326 |
L(21) |
≈ |
1.387551326 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 7 | 1+(−0.866−0.5i)T |
| 13 | 1+(0.426+3.58i)T |
good | 5 | 1−0.901iT−5T2 |
| 11 | 1+(−3.75+2.16i)T+(5.5−9.52i)T2 |
| 17 | 1+(2.53−4.38i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−5.34−3.08i)T+(9.5+16.4i)T2 |
| 23 | 1+(4.22+7.31i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.09+1.89i)T+(−14.5+25.1i)T2 |
| 31 | 1+0.873iT−31T2 |
| 37 | 1+(−0.124+0.0721i)T+(18.5−32.0i)T2 |
| 41 | 1+(−3.46+1.99i)T+(20.5−35.5i)T2 |
| 43 | 1+(−3.85+6.67i)T+(−21.5−37.2i)T2 |
| 47 | 1+2.92iT−47T2 |
| 53 | 1+1.69T+53T2 |
| 59 | 1+(−7.40−4.27i)T+(29.5+51.0i)T2 |
| 61 | 1+(4.16−7.21i)T+(−30.5−52.8i)T2 |
| 67 | 1+(8.99−5.19i)T+(33.5−58.0i)T2 |
| 71 | 1+(−2.83−1.63i)T+(35.5+61.4i)T2 |
| 73 | 1+0.539iT−73T2 |
| 79 | 1−6.53T+79T2 |
| 83 | 1+13.2iT−83T2 |
| 89 | 1+(−6.74+3.89i)T+(44.5−77.0i)T2 |
| 97 | 1+(−10.1−5.85i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.193650114727170519840168576555, −8.591441250887337449988616805023, −7.916731067416108357431290060827, −7.05829557173326216903647603756, −6.14701539415968648002954986691, −5.67877965827264367883147574496, −4.37120304835677143173640720982, −3.36485186679785775082858627651, −2.16079708030022018615363977058, −0.842534623739461893395076219275,
1.05992034725063246260820329733, 1.99903119263241178157146622856, 3.29634391080080342716618316358, 4.36811206288394672459834353553, 5.03735024868166052596681010909, 6.38265313561375339385787752714, 7.17478549824857992082557148038, 7.70932413740074769062901828798, 8.924328192734130654379720938683, 9.364754563557655780406274091985