Properties

Label 2-1638-13.10-c1-0-12
Degree 22
Conductor 16381638
Sign 0.4730.880i-0.473 - 0.880i
Analytic cond. 13.079413.0794
Root an. cond. 3.616553.61655
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + 3.48i·5-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (−1.74 − 3.02i)10-s + (2.32 − 1.34i)11-s + (−3.15 + 1.74i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (2.95 − 5.12i)17-s + (4.50 + 2.59i)19-s + (3.02 + 1.74i)20-s + (−1.34 + 2.32i)22-s + (3.52 + 6.10i)23-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 1.55i·5-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (−0.551 − 0.955i)10-s + (0.700 − 0.404i)11-s + (−0.874 + 0.484i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (0.717 − 1.24i)17-s + (1.03 + 0.596i)19-s + (0.675 + 0.389i)20-s + (−0.285 + 0.495i)22-s + (0.735 + 1.27i)23-s + ⋯

Functional equation

Λ(s)=(1638s/2ΓC(s)L(s)=((0.4730.880i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.473 - 0.880i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1638s/2ΓC(s+1/2)L(s)=((0.4730.880i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.473 - 0.880i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 16381638    =    2327132 \cdot 3^{2} \cdot 7 \cdot 13
Sign: 0.4730.880i-0.473 - 0.880i
Analytic conductor: 13.079413.0794
Root analytic conductor: 3.616553.61655
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1638(127,)\chi_{1638} (127, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1638, ( :1/2), 0.4730.880i)(2,\ 1638,\ (\ :1/2),\ -0.473 - 0.880i)

Particular Values

L(1)L(1) \approx 1.3009014091.300901409
L(12)L(\frac12) \approx 1.3009014091.300901409
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
3 1 1
7 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
13 1+(3.151.74i)T 1 + (3.15 - 1.74i)T
good5 13.48iT5T2 1 - 3.48iT - 5T^{2}
11 1+(2.32+1.34i)T+(5.59.52i)T2 1 + (-2.32 + 1.34i)T + (5.5 - 9.52i)T^{2}
17 1+(2.95+5.12i)T+(8.514.7i)T2 1 + (-2.95 + 5.12i)T + (-8.5 - 14.7i)T^{2}
19 1+(4.502.59i)T+(9.5+16.4i)T2 1 + (-4.50 - 2.59i)T + (9.5 + 16.4i)T^{2}
23 1+(3.526.10i)T+(11.5+19.9i)T2 1 + (-3.52 - 6.10i)T + (-11.5 + 19.9i)T^{2}
29 1+(3.566.17i)T+(14.5+25.1i)T2 1 + (-3.56 - 6.17i)T + (-14.5 + 25.1i)T^{2}
31 10.782iT31T2 1 - 0.782iT - 31T^{2}
37 1+(6.76+3.90i)T+(18.532.0i)T2 1 + (-6.76 + 3.90i)T + (18.5 - 32.0i)T^{2}
41 1+(0.1360.0788i)T+(20.535.5i)T2 1 + (0.136 - 0.0788i)T + (20.5 - 35.5i)T^{2}
43 1+(0.1650.285i)T+(21.537.2i)T2 1 + (0.165 - 0.285i)T + (-21.5 - 37.2i)T^{2}
47 11.60iT47T2 1 - 1.60iT - 47T^{2}
53 1+3.92T+53T2 1 + 3.92T + 53T^{2}
59 1+(8.26+4.77i)T+(29.5+51.0i)T2 1 + (8.26 + 4.77i)T + (29.5 + 51.0i)T^{2}
61 1+(7.7013.3i)T+(30.552.8i)T2 1 + (7.70 - 13.3i)T + (-30.5 - 52.8i)T^{2}
67 1+(0.837+0.483i)T+(33.558.0i)T2 1 + (-0.837 + 0.483i)T + (33.5 - 58.0i)T^{2}
71 1+(3.62+2.09i)T+(35.5+61.4i)T2 1 + (3.62 + 2.09i)T + (35.5 + 61.4i)T^{2}
73 1+15.0iT73T2 1 + 15.0iT - 73T^{2}
79 1+0.293T+79T2 1 + 0.293T + 79T^{2}
83 12.87iT83T2 1 - 2.87iT - 83T^{2}
89 1+(4.512.60i)T+(44.577.0i)T2 1 + (4.51 - 2.60i)T + (44.5 - 77.0i)T^{2}
97 1+(2.73+1.57i)T+(48.5+84.0i)T2 1 + (2.73 + 1.57i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.525102742815466528116759368825, −9.084583718519104710342126303960, −7.63558936013382788797138075922, −7.44589544266410787433849460596, −6.63867582166535453157116187292, −5.78684499884123563227566893026, −4.87856568786880463447939136909, −3.39127925123866402381072766280, −2.74883803919799337556115608951, −1.35678539728457361497009440933, 0.69917211380920880250532149126, 1.54754253100856410646313792759, 2.87202064354737723262237851712, 4.25075064277953914167896289138, 4.77643461800186061988156860404, 5.79132524959693989833754593616, 6.88432051802404109211866170578, 7.956841250660286134280746472270, 8.259814759773995758183005970564, 9.246428660932733963551999814314

Graph of the ZZ-function along the critical line