Properties

Label 2-1638-13.10-c1-0-11
Degree 22
Conductor 16381638
Sign 0.1830.983i-0.183 - 0.983i
Analytic cond. 13.079413.0794
Root an. cond. 3.616553.61655
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + 2.19i·5-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (−1.09 − 1.89i)10-s + (−3.54 + 2.04i)11-s + (3.53 − 0.706i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (2.85 − 4.93i)17-s + (6.69 + 3.86i)19-s + (1.89 + 1.09i)20-s + (2.04 − 3.54i)22-s + (−1.23 − 2.14i)23-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 0.980i·5-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (−0.346 − 0.600i)10-s + (−1.06 + 0.616i)11-s + (0.980 − 0.196i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (0.691 − 1.19i)17-s + (1.53 + 0.886i)19-s + (0.424 + 0.245i)20-s + (0.435 − 0.755i)22-s + (−0.258 − 0.447i)23-s + ⋯

Functional equation

Λ(s)=(1638s/2ΓC(s)L(s)=((0.1830.983i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.183 - 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1638s/2ΓC(s+1/2)L(s)=((0.1830.983i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.183 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 16381638    =    2327132 \cdot 3^{2} \cdot 7 \cdot 13
Sign: 0.1830.983i-0.183 - 0.983i
Analytic conductor: 13.079413.0794
Root analytic conductor: 3.616553.61655
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1638(127,)\chi_{1638} (127, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1638, ( :1/2), 0.1830.983i)(2,\ 1638,\ (\ :1/2),\ -0.183 - 0.983i)

Particular Values

L(1)L(1) \approx 1.2621930761.262193076
L(12)L(\frac12) \approx 1.2621930761.262193076
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
3 1 1
7 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
13 1+(3.53+0.706i)T 1 + (-3.53 + 0.706i)T
good5 12.19iT5T2 1 - 2.19iT - 5T^{2}
11 1+(3.542.04i)T+(5.59.52i)T2 1 + (3.54 - 2.04i)T + (5.5 - 9.52i)T^{2}
17 1+(2.85+4.93i)T+(8.514.7i)T2 1 + (-2.85 + 4.93i)T + (-8.5 - 14.7i)T^{2}
19 1+(6.693.86i)T+(9.5+16.4i)T2 1 + (-6.69 - 3.86i)T + (9.5 + 16.4i)T^{2}
23 1+(1.23+2.14i)T+(11.5+19.9i)T2 1 + (1.23 + 2.14i)T + (-11.5 + 19.9i)T^{2}
29 1+(4.908.50i)T+(14.5+25.1i)T2 1 + (-4.90 - 8.50i)T + (-14.5 + 25.1i)T^{2}
31 1+7.19iT31T2 1 + 7.19iT - 31T^{2}
37 1+(8.795.07i)T+(18.532.0i)T2 1 + (8.79 - 5.07i)T + (18.5 - 32.0i)T^{2}
41 1+(3.141.81i)T+(20.535.5i)T2 1 + (3.14 - 1.81i)T + (20.5 - 35.5i)T^{2}
43 1+(1.372.38i)T+(21.537.2i)T2 1 + (1.37 - 2.38i)T + (-21.5 - 37.2i)T^{2}
47 17.70iT47T2 1 - 7.70iT - 47T^{2}
53 16.31T+53T2 1 - 6.31T + 53T^{2}
59 1+(4.202.42i)T+(29.5+51.0i)T2 1 + (-4.20 - 2.42i)T + (29.5 + 51.0i)T^{2}
61 1+(5.63+9.75i)T+(30.552.8i)T2 1 + (-5.63 + 9.75i)T + (-30.5 - 52.8i)T^{2}
67 1+(5.493.17i)T+(33.558.0i)T2 1 + (5.49 - 3.17i)T + (33.5 - 58.0i)T^{2}
71 1+(7.21+4.16i)T+(35.5+61.4i)T2 1 + (7.21 + 4.16i)T + (35.5 + 61.4i)T^{2}
73 17.37iT73T2 1 - 7.37iT - 73T^{2}
79 13.45T+79T2 1 - 3.45T + 79T^{2}
83 1+0.332iT83T2 1 + 0.332iT - 83T^{2}
89 1+(11.76.76i)T+(44.577.0i)T2 1 + (11.7 - 6.76i)T + (44.5 - 77.0i)T^{2}
97 1+(10.05.80i)T+(48.5+84.0i)T2 1 + (-10.0 - 5.80i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.781317412627081726174908603863, −8.689881531342553825310705619965, −7.904955142515421507871672871517, −7.33254350804985506683332565134, −6.59352887271357040048225028198, −5.56793445149107358329302173078, −4.95228614775219841416014050306, −3.37852648310366344705700059731, −2.64710374567470565514554430844, −1.24957970007362354644070963289, 0.69046869594014072079153430203, 1.65395991825429234863099151121, 3.06286968413610492029204148717, 3.95519820430291287159696866576, 5.15355392670660067505202292672, 5.71812305370841430985424856668, 6.97541309101079898640251358717, 7.85562987640495348077697240584, 8.576380930255167629182561114303, 8.865737608389913135183311639667

Graph of the ZZ-function along the critical line