L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + 2.19i·5-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (−1.09 − 1.89i)10-s + (−3.54 + 2.04i)11-s + (3.53 − 0.706i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (2.85 − 4.93i)17-s + (6.69 + 3.86i)19-s + (1.89 + 1.09i)20-s + (2.04 − 3.54i)22-s + (−1.23 − 2.14i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 0.980i·5-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (−0.346 − 0.600i)10-s + (−1.06 + 0.616i)11-s + (0.980 − 0.196i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (0.691 − 1.19i)17-s + (1.53 + 0.886i)19-s + (0.424 + 0.245i)20-s + (0.435 − 0.755i)22-s + (−0.258 − 0.447i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.183 - 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.183 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.262193076\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.262193076\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (-3.53 + 0.706i)T \) |
good | 5 | \( 1 - 2.19iT - 5T^{2} \) |
| 11 | \( 1 + (3.54 - 2.04i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.85 + 4.93i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.69 - 3.86i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.23 + 2.14i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.90 - 8.50i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.19iT - 31T^{2} \) |
| 37 | \( 1 + (8.79 - 5.07i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.14 - 1.81i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.37 - 2.38i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 7.70iT - 47T^{2} \) |
| 53 | \( 1 - 6.31T + 53T^{2} \) |
| 59 | \( 1 + (-4.20 - 2.42i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.63 + 9.75i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.49 - 3.17i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.21 + 4.16i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 7.37iT - 73T^{2} \) |
| 79 | \( 1 - 3.45T + 79T^{2} \) |
| 83 | \( 1 + 0.332iT - 83T^{2} \) |
| 89 | \( 1 + (11.7 - 6.76i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-10.0 - 5.80i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.781317412627081726174908603863, −8.689881531342553825310705619965, −7.904955142515421507871672871517, −7.33254350804985506683332565134, −6.59352887271357040048225028198, −5.56793445149107358329302173078, −4.95228614775219841416014050306, −3.37852648310366344705700059731, −2.64710374567470565514554430844, −1.24957970007362354644070963289,
0.69046869594014072079153430203, 1.65395991825429234863099151121, 3.06286968413610492029204148717, 3.95519820430291287159696866576, 5.15355392670660067505202292672, 5.71812305370841430985424856668, 6.97541309101079898640251358717, 7.85562987640495348077697240584, 8.576380930255167629182561114303, 8.865737608389913135183311639667