L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s − 3.38i·5-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (1.69 + 2.93i)10-s + (−0.712 + 0.411i)11-s + (−2.74 + 2.33i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (−2.29 + 3.96i)17-s + (−5.11 − 2.95i)19-s + (−2.93 − 1.69i)20-s + (0.411 − 0.712i)22-s + (3.06 + 5.30i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s − 1.51i·5-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (0.535 + 0.928i)10-s + (−0.214 + 0.124i)11-s + (−0.762 + 0.646i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (−0.555 + 0.962i)17-s + (−1.17 − 0.677i)19-s + (−0.656 − 0.378i)20-s + (0.0877 − 0.151i)22-s + (0.639 + 1.10i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(−0.636−0.770i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(−0.636−0.770i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
−0.636−0.770i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), −0.636−0.770i)
|
Particular Values
L(1) |
≈ |
0.3489801837 |
L(21) |
≈ |
0.3489801837 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 7 | 1+(−0.866−0.5i)T |
| 13 | 1+(2.74−2.33i)T |
good | 5 | 1+3.38iT−5T2 |
| 11 | 1+(0.712−0.411i)T+(5.5−9.52i)T2 |
| 17 | 1+(2.29−3.96i)T+(−8.5−14.7i)T2 |
| 19 | 1+(5.11+2.95i)T+(9.5+16.4i)T2 |
| 23 | 1+(−3.06−5.30i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.43+5.94i)T+(−14.5+25.1i)T2 |
| 31 | 1−4.28iT−31T2 |
| 37 | 1+(8.39−4.84i)T+(18.5−32.0i)T2 |
| 41 | 1+(−0.0774+0.0446i)T+(20.5−35.5i)T2 |
| 43 | 1+(−3.67+6.36i)T+(−21.5−37.2i)T2 |
| 47 | 1−11.1iT−47T2 |
| 53 | 1−7.01T+53T2 |
| 59 | 1+(1.50+0.870i)T+(29.5+51.0i)T2 |
| 61 | 1+(1.18−2.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.252+0.145i)T+(33.5−58.0i)T2 |
| 71 | 1+(9.48+5.47i)T+(35.5+61.4i)T2 |
| 73 | 1−12.7iT−73T2 |
| 79 | 1−9.95T+79T2 |
| 83 | 1−3.23iT−83T2 |
| 89 | 1+(6.96−4.02i)T+(44.5−77.0i)T2 |
| 97 | 1+(−12.7−7.38i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.292806056201695341897659910878, −8.909919420582610003889286675684, −8.269808848678991394403408977170, −7.44063697021978196097865065754, −6.53710817701216606885653291950, −5.51722177001712952959365065906, −4.83718730072515938933287147319, −4.07724472570487124447950129454, −2.28012032687777358265253611413, −1.37158764093879750724689664774,
0.16023752689218488783500413660, 2.09592991444404758346045938817, 2.78713441193942321906303362060, 3.72506308943262425294860255855, 4.90507197307536261396958564945, 6.06486770200072431270940743928, 7.03573285839534686488053694154, 7.34079684565019894387880705732, 8.335642753472153944179758535003, 9.128687651334172995174709709578