L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s − 3.38i·5-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (1.69 + 2.93i)10-s + (−0.712 + 0.411i)11-s + (−2.74 + 2.33i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (−2.29 + 3.96i)17-s + (−5.11 − 2.95i)19-s + (−2.93 − 1.69i)20-s + (0.411 − 0.712i)22-s + (3.06 + 5.30i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s − 1.51i·5-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (0.535 + 0.928i)10-s + (−0.214 + 0.124i)11-s + (−0.762 + 0.646i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (−0.555 + 0.962i)17-s + (−1.17 − 0.677i)19-s + (−0.656 − 0.378i)20-s + (0.0877 − 0.151i)22-s + (0.639 + 1.10i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.636 - 0.770i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.636 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3489801837\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3489801837\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (2.74 - 2.33i)T \) |
good | 5 | \( 1 + 3.38iT - 5T^{2} \) |
| 11 | \( 1 + (0.712 - 0.411i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2.29 - 3.96i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.11 + 2.95i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.06 - 5.30i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.43 + 5.94i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4.28iT - 31T^{2} \) |
| 37 | \( 1 + (8.39 - 4.84i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.0774 + 0.0446i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.67 + 6.36i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 11.1iT - 47T^{2} \) |
| 53 | \( 1 - 7.01T + 53T^{2} \) |
| 59 | \( 1 + (1.50 + 0.870i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.18 - 2.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.252 + 0.145i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (9.48 + 5.47i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 12.7iT - 73T^{2} \) |
| 79 | \( 1 - 9.95T + 79T^{2} \) |
| 83 | \( 1 - 3.23iT - 83T^{2} \) |
| 89 | \( 1 + (6.96 - 4.02i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-12.7 - 7.38i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.292806056201695341897659910878, −8.909919420582610003889286675684, −8.269808848678991394403408977170, −7.44063697021978196097865065754, −6.53710817701216606885653291950, −5.51722177001712952959365065906, −4.83718730072515938933287147319, −4.07724472570487124447950129454, −2.28012032687777358265253611413, −1.37158764093879750724689664774,
0.16023752689218488783500413660, 2.09592991444404758346045938817, 2.78713441193942321906303362060, 3.72506308943262425294860255855, 4.90507197307536261396958564945, 6.06486770200072431270940743928, 7.03573285839534686488053694154, 7.34079684565019894387880705732, 8.335642753472153944179758535003, 9.128687651334172995174709709578