Properties

Label 2-1638-1.1-c1-0-3
Degree $2$
Conductor $1638$
Sign $1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·5-s − 7-s + 8-s − 4·10-s + 11-s + 13-s − 14-s + 16-s − 4·17-s + 2·19-s − 4·20-s + 22-s + 7·23-s + 11·25-s + 26-s − 28-s + 8·29-s + 3·31-s + 32-s − 4·34-s + 4·35-s + 7·37-s + 2·38-s − 4·40-s + 7·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.377·7-s + 0.353·8-s − 1.26·10-s + 0.301·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.970·17-s + 0.458·19-s − 0.894·20-s + 0.213·22-s + 1.45·23-s + 11/5·25-s + 0.196·26-s − 0.188·28-s + 1.48·29-s + 0.538·31-s + 0.176·32-s − 0.685·34-s + 0.676·35-s + 1.15·37-s + 0.324·38-s − 0.632·40-s + 1.09·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.839748737\)
\(L(\frac12)\) \(\approx\) \(1.839748737\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 7 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 13 T + p T^{2} \)
67 \( 1 - 7 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 + 13 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 11 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.229708445181394321480923526929, −8.446510046834741944724142023215, −7.70223365400781146351389504873, −6.89743886981333030203070546273, −6.32586188918121275548015521553, −4.91521481773069545833368645820, −4.38408648015283815906866115610, −3.48622278921391586115492321920, −2.77045286705004577101314310504, −0.859680047349367001421384183810, 0.859680047349367001421384183810, 2.77045286705004577101314310504, 3.48622278921391586115492321920, 4.38408648015283815906866115610, 4.91521481773069545833368645820, 6.32586188918121275548015521553, 6.89743886981333030203070546273, 7.70223365400781146351389504873, 8.446510046834741944724142023215, 9.229708445181394321480923526929

Graph of the $Z$-function along the critical line