L(s) = 1 | + 2-s + 4-s − 4·5-s − 7-s + 8-s − 4·10-s + 11-s + 13-s − 14-s + 16-s − 4·17-s + 2·19-s − 4·20-s + 22-s + 7·23-s + 11·25-s + 26-s − 28-s + 8·29-s + 3·31-s + 32-s − 4·34-s + 4·35-s + 7·37-s + 2·38-s − 4·40-s + 7·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.377·7-s + 0.353·8-s − 1.26·10-s + 0.301·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.970·17-s + 0.458·19-s − 0.894·20-s + 0.213·22-s + 1.45·23-s + 11/5·25-s + 0.196·26-s − 0.188·28-s + 1.48·29-s + 0.538·31-s + 0.176·32-s − 0.685·34-s + 0.676·35-s + 1.15·37-s + 0.324·38-s − 0.632·40-s + 1.09·41-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.839748737 |
L(21) |
≈ |
1.839748737 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1+T |
| 13 | 1−T |
good | 5 | 1+4T+pT2 |
| 11 | 1−T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1−7T+pT2 |
| 29 | 1−8T+pT2 |
| 31 | 1−3T+pT2 |
| 37 | 1−7T+pT2 |
| 41 | 1−7T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1+3T+pT2 |
| 53 | 1+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1+13T+pT2 |
| 67 | 1−7T+pT2 |
| 71 | 1+4T+pT2 |
| 73 | 1−9T+pT2 |
| 79 | 1+13T+pT2 |
| 83 | 1−16T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−11T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.229708445181394321480923526929, −8.446510046834741944724142023215, −7.70223365400781146351389504873, −6.89743886981333030203070546273, −6.32586188918121275548015521553, −4.91521481773069545833368645820, −4.38408648015283815906866115610, −3.48622278921391586115492321920, −2.77045286705004577101314310504, −0.859680047349367001421384183810,
0.859680047349367001421384183810, 2.77045286705004577101314310504, 3.48622278921391586115492321920, 4.38408648015283815906866115610, 4.91521481773069545833368645820, 6.32586188918121275548015521553, 6.89743886981333030203070546273, 7.70223365400781146351389504873, 8.446510046834741944724142023215, 9.229708445181394321480923526929