L(s) = 1 | + 2-s + 4-s − 3·5-s + 7-s + 8-s − 3·10-s − 11-s − 13-s + 14-s + 16-s − 5·17-s − 19-s − 3·20-s − 22-s + 23-s + 4·25-s − 26-s + 28-s − 7·29-s − 2·31-s + 32-s − 5·34-s − 3·35-s + 37-s − 38-s − 3·40-s − 6·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 1.34·5-s + 0.377·7-s + 0.353·8-s − 0.948·10-s − 0.301·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 1.21·17-s − 0.229·19-s − 0.670·20-s − 0.213·22-s + 0.208·23-s + 4/5·25-s − 0.196·26-s + 0.188·28-s − 1.29·29-s − 0.359·31-s + 0.176·32-s − 0.857·34-s − 0.507·35-s + 0.164·37-s − 0.162·38-s − 0.474·40-s − 0.937·41-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1−T |
| 13 | 1+T |
good | 5 | 1+3T+pT2 |
| 11 | 1+T+pT2 |
| 17 | 1+5T+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1−T+pT2 |
| 29 | 1+7T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1+3T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1+5T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1+11T+pT2 |
| 79 | 1+14T+pT2 |
| 83 | 1−2T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.753348500037287827964908129272, −8.087399671123924969643801147843, −7.31743211521265601126957812633, −6.69061749873854041708189827769, −5.51931339869349074764387757967, −4.66162486191056383154167071598, −4.01680586816339694050615224274, −3.11346507231815676323880972931, −1.89913794199562214175475004949, 0,
1.89913794199562214175475004949, 3.11346507231815676323880972931, 4.01680586816339694050615224274, 4.66162486191056383154167071598, 5.51931339869349074764387757967, 6.69061749873854041708189827769, 7.31743211521265601126957812633, 8.087399671123924969643801147843, 8.753348500037287827964908129272