L(s) = 1 | − 2-s + 4-s + 5-s + 7-s − 8-s − 10-s − 5·11-s − 13-s − 14-s + 16-s + 3·17-s − 19-s + 20-s + 5·22-s − 3·23-s − 4·25-s + 26-s + 28-s − 9·29-s + 4·31-s − 32-s − 3·34-s + 35-s − 11·37-s + 38-s − 40-s − 5·43-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s − 0.353·8-s − 0.316·10-s − 1.50·11-s − 0.277·13-s − 0.267·14-s + 1/4·16-s + 0.727·17-s − 0.229·19-s + 0.223·20-s + 1.06·22-s − 0.625·23-s − 4/5·25-s + 0.196·26-s + 0.188·28-s − 1.67·29-s + 0.718·31-s − 0.176·32-s − 0.514·34-s + 0.169·35-s − 1.80·37-s + 0.162·38-s − 0.158·40-s − 0.762·43-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1−T |
| 13 | 1+T |
good | 5 | 1−T+pT2 |
| 11 | 1+5T+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1+3T+pT2 |
| 29 | 1+9T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+11T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+5T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1+15T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1−12T+pT2 |
| 73 | 1−11T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1−14T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.067467943273849313007184265002, −7.935932481491448532694078819912, −7.80015052507622603521937526703, −6.69232029580076888718309416404, −5.63709318901757604410923700064, −5.14572588019451526117366164450, −3.74734603047492382743471605599, −2.56045395592179615052900667030, −1.71010590596796076771996481178, 0,
1.71010590596796076771996481178, 2.56045395592179615052900667030, 3.74734603047492382743471605599, 5.14572588019451526117366164450, 5.63709318901757604410923700064, 6.69232029580076888718309416404, 7.80015052507622603521937526703, 7.935932481491448532694078819912, 9.067467943273849313007184265002