Properties

Label 2-1638-1.1-c1-0-17
Degree $2$
Conductor $1638$
Sign $-1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3.37·5-s − 7-s − 8-s + 3.37·10-s + 3.37·11-s − 13-s + 14-s + 16-s + 1.37·17-s + 7.37·19-s − 3.37·20-s − 3.37·22-s − 9.37·23-s + 6.37·25-s + 26-s − 28-s − 0.627·29-s + 6.74·31-s − 32-s − 1.37·34-s + 3.37·35-s + 1.37·37-s − 7.37·38-s + 3.37·40-s + 2.74·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.50·5-s − 0.377·7-s − 0.353·8-s + 1.06·10-s + 1.01·11-s − 0.277·13-s + 0.267·14-s + 0.250·16-s + 0.332·17-s + 1.69·19-s − 0.754·20-s − 0.718·22-s − 1.95·23-s + 1.27·25-s + 0.196·26-s − 0.188·28-s − 0.116·29-s + 1.21·31-s − 0.176·32-s − 0.235·34-s + 0.570·35-s + 0.225·37-s − 1.19·38-s + 0.533·40-s + 0.428·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + 3.37T + 5T^{2} \)
11 \( 1 - 3.37T + 11T^{2} \)
17 \( 1 - 1.37T + 17T^{2} \)
19 \( 1 - 7.37T + 19T^{2} \)
23 \( 1 + 9.37T + 23T^{2} \)
29 \( 1 + 0.627T + 29T^{2} \)
31 \( 1 - 6.74T + 31T^{2} \)
37 \( 1 - 1.37T + 37T^{2} \)
41 \( 1 - 2.74T + 41T^{2} \)
43 \( 1 + 6.11T + 43T^{2} \)
47 \( 1 + 12.7T + 47T^{2} \)
53 \( 1 - 2.74T + 53T^{2} \)
59 \( 1 + 2T + 59T^{2} \)
61 \( 1 + 12.1T + 61T^{2} \)
67 \( 1 + 13.4T + 67T^{2} \)
71 \( 1 + 6.74T + 71T^{2} \)
73 \( 1 + 2.62T + 73T^{2} \)
79 \( 1 + 6.74T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 14.7T + 89T^{2} \)
97 \( 1 + 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.987704821613918900132439242807, −7.971201297115256601396982665464, −7.70656538507678598770762637755, −6.77507242625469800641900267219, −5.96831913046664675574752327681, −4.64992976034127445628747307556, −3.74282880291515877863947741562, −3.00834552043087154785451106595, −1.35575343499617005022179923724, 0, 1.35575343499617005022179923724, 3.00834552043087154785451106595, 3.74282880291515877863947741562, 4.64992976034127445628747307556, 5.96831913046664675574752327681, 6.77507242625469800641900267219, 7.70656538507678598770762637755, 7.971201297115256601396982665464, 8.987704821613918900132439242807

Graph of the $Z$-function along the critical line