Properties

Label 2-1638-1.1-c1-0-13
Degree $2$
Conductor $1638$
Sign $1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 5·11-s − 13-s + 14-s + 16-s + 4·17-s + 2·19-s + 5·22-s − 5·23-s − 5·25-s − 26-s + 28-s − 4·29-s + 31-s + 32-s + 4·34-s + 7·37-s + 2·38-s + 9·41-s − 12·43-s + 5·44-s − 5·46-s + 7·47-s + 49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 1.50·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.970·17-s + 0.458·19-s + 1.06·22-s − 1.04·23-s − 25-s − 0.196·26-s + 0.188·28-s − 0.742·29-s + 0.179·31-s + 0.176·32-s + 0.685·34-s + 1.15·37-s + 0.324·38-s + 1.40·41-s − 1.82·43-s + 0.753·44-s − 0.737·46-s + 1.02·47-s + 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.093420062\)
\(L(\frac12)\) \(\approx\) \(3.093420062\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 5 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 - T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + 17 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 5 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.612571086844589429454518424632, −8.469152938024698877370110317561, −7.68409626813723475327909628947, −6.90643848137944117202320139495, −5.98244664513634320441588551536, −5.36737041037488579734906212522, −4.15982302022081941279948742151, −3.71179494687009087455073957292, −2.36943591207239051047957475876, −1.23766611312278004155286222469, 1.23766611312278004155286222469, 2.36943591207239051047957475876, 3.71179494687009087455073957292, 4.15982302022081941279948742151, 5.36737041037488579734906212522, 5.98244664513634320441588551536, 6.90643848137944117202320139495, 7.68409626813723475327909628947, 8.469152938024698877370110317561, 9.612571086844589429454518424632

Graph of the $Z$-function along the critical line