L(s) = 1 | + 2-s + 4-s + 7-s + 8-s + 5·11-s − 13-s + 14-s + 16-s + 4·17-s + 2·19-s + 5·22-s − 5·23-s − 5·25-s − 26-s + 28-s − 4·29-s + 31-s + 32-s + 4·34-s + 7·37-s + 2·38-s + 9·41-s − 12·43-s + 5·44-s − 5·46-s + 7·47-s + 49-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 1.50·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.970·17-s + 0.458·19-s + 1.06·22-s − 1.04·23-s − 25-s − 0.196·26-s + 0.188·28-s − 0.742·29-s + 0.179·31-s + 0.176·32-s + 0.685·34-s + 1.15·37-s + 0.324·38-s + 1.40·41-s − 1.82·43-s + 0.753·44-s − 0.737·46-s + 1.02·47-s + 1/7·49-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.093420062 |
L(21) |
≈ |
3.093420062 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1−T |
| 13 | 1+T |
good | 5 | 1+pT2 |
| 11 | 1−5T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1+5T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1−T+pT2 |
| 37 | 1−7T+pT2 |
| 41 | 1−9T+pT2 |
| 43 | 1+12T+pT2 |
| 47 | 1−7T+pT2 |
| 53 | 1−4T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1−13T+pT2 |
| 67 | 1−11T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−7T+pT2 |
| 79 | 1+17T+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1−5T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.612571086844589429454518424632, −8.469152938024698877370110317561, −7.68409626813723475327909628947, −6.90643848137944117202320139495, −5.98244664513634320441588551536, −5.36737041037488579734906212522, −4.15982302022081941279948742151, −3.71179494687009087455073957292, −2.36943591207239051047957475876, −1.23766611312278004155286222469,
1.23766611312278004155286222469, 2.36943591207239051047957475876, 3.71179494687009087455073957292, 4.15982302022081941279948742151, 5.36737041037488579734906212522, 5.98244664513634320441588551536, 6.90643848137944117202320139495, 7.68409626813723475327909628947, 8.469152938024698877370110317561, 9.612571086844589429454518424632