Properties

Label 2-16245-1.1-c1-0-9
Degree $2$
Conductor $16245$
Sign $-1$
Analytic cond. $129.716$
Root an. cond. $11.3893$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 5-s − 2·7-s − 2·10-s + 3·11-s + 6·13-s + 4·14-s − 4·16-s − 6·17-s + 2·20-s − 6·22-s + 8·23-s + 25-s − 12·26-s − 4·28-s − 7·29-s + 9·31-s + 8·32-s + 12·34-s − 2·35-s − 2·37-s − 6·41-s + 10·43-s + 6·44-s − 16·46-s − 4·47-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.447·5-s − 0.755·7-s − 0.632·10-s + 0.904·11-s + 1.66·13-s + 1.06·14-s − 16-s − 1.45·17-s + 0.447·20-s − 1.27·22-s + 1.66·23-s + 1/5·25-s − 2.35·26-s − 0.755·28-s − 1.29·29-s + 1.61·31-s + 1.41·32-s + 2.05·34-s − 0.338·35-s − 0.328·37-s − 0.937·41-s + 1.52·43-s + 0.904·44-s − 2.35·46-s − 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16245\)    =    \(3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(129.716\)
Root analytic conductor: \(11.3893\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 16245,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
19 \( 1 \)
good2 \( 1 + p T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 7 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 14 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.34282933144755, −15.78559287572106, −15.45834936958880, −14.69836767548134, −13.79811183769072, −13.44391658520617, −13.04929326117170, −12.25834003626368, −11.32007050572292, −11.02412150903052, −10.65074962290063, −9.711776686360789, −9.365027847329194, −8.899155653931670, −8.502414365771857, −7.735372608527110, −6.867539628814433, −6.502792736488725, −6.113504249696727, −4.985152346187800, −4.244078580201647, −3.440346219583338, −2.641239497506407, −1.607860427970451, −1.123835423275056, 0, 1.123835423275056, 1.607860427970451, 2.641239497506407, 3.440346219583338, 4.244078580201647, 4.985152346187800, 6.113504249696727, 6.502792736488725, 6.867539628814433, 7.735372608527110, 8.502414365771857, 8.899155653931670, 9.365027847329194, 9.711776686360789, 10.65074962290063, 11.02412150903052, 11.32007050572292, 12.25834003626368, 13.04929326117170, 13.44391658520617, 13.79811183769072, 14.69836767548134, 15.45834936958880, 15.78559287572106, 16.34282933144755

Graph of the $Z$-function along the critical line