Properties

Label 2-16245-1.1-c1-0-8
Degree $2$
Conductor $16245$
Sign $-1$
Analytic cond. $129.716$
Root an. cond. $11.3893$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s + 2·7-s + 3·8-s − 10-s + 4·11-s − 2·13-s − 2·14-s − 16-s − 6·17-s − 20-s − 4·22-s − 6·23-s + 25-s + 2·26-s − 2·28-s − 4·31-s − 5·32-s + 6·34-s + 2·35-s + 6·37-s + 3·40-s + 8·41-s + 6·43-s − 4·44-s + 6·46-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s + 0.755·7-s + 1.06·8-s − 0.316·10-s + 1.20·11-s − 0.554·13-s − 0.534·14-s − 1/4·16-s − 1.45·17-s − 0.223·20-s − 0.852·22-s − 1.25·23-s + 1/5·25-s + 0.392·26-s − 0.377·28-s − 0.718·31-s − 0.883·32-s + 1.02·34-s + 0.338·35-s + 0.986·37-s + 0.474·40-s + 1.24·41-s + 0.914·43-s − 0.603·44-s + 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16245\)    =    \(3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(129.716\)
Root analytic conductor: \(11.3893\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 16245,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
19 \( 1 \)
good2 \( 1 + T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + 14 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.26273937756855, −15.91727906104058, −14.88760424800857, −14.57938440149819, −13.94184778502602, −13.72267683213131, −12.70194159591985, −12.54615258919076, −11.46095993136365, −11.16924453010695, −10.58888832245443, −9.677299850500546, −9.476642633847634, −8.933325272809587, −8.244521579974750, −7.792224544737773, −7.044489712575237, −6.396132570885751, −5.694102927777490, −4.872375169060376, −4.286782733654280, −3.875108661727217, −2.508016437010309, −1.849992287269097, −1.117190259165496, 0, 1.117190259165496, 1.849992287269097, 2.508016437010309, 3.875108661727217, 4.286782733654280, 4.872375169060376, 5.694102927777490, 6.396132570885751, 7.044489712575237, 7.792224544737773, 8.244521579974750, 8.933325272809587, 9.476642633847634, 9.677299850500546, 10.58888832245443, 11.16924453010695, 11.46095993136365, 12.54615258919076, 12.70194159591985, 13.72267683213131, 13.94184778502602, 14.57938440149819, 14.88760424800857, 15.91727906104058, 16.26273937756855

Graph of the $Z$-function along the critical line