L(s) = 1 | + 2-s − 4-s − 5-s + 4·7-s − 3·8-s − 10-s − 4·11-s − 2·13-s + 4·14-s − 16-s − 2·17-s + 20-s − 4·22-s + 4·23-s + 25-s − 2·26-s − 4·28-s − 2·29-s + 5·32-s − 2·34-s − 4·35-s + 6·37-s + 3·40-s − 6·41-s + 8·43-s + 4·44-s + 4·46-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.51·7-s − 1.06·8-s − 0.316·10-s − 1.20·11-s − 0.554·13-s + 1.06·14-s − 1/4·16-s − 0.485·17-s + 0.223·20-s − 0.852·22-s + 0.834·23-s + 1/5·25-s − 0.392·26-s − 0.755·28-s − 0.371·29-s + 0.883·32-s − 0.342·34-s − 0.676·35-s + 0.986·37-s + 0.474·40-s − 0.937·41-s + 1.21·43-s + 0.603·44-s + 0.589·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 - T + p T^{2} \) |
| 7 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 - 12 T + p T^{2} \) |
| 53 | \( 1 + 14 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 - 14 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 + 14 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.87951060060536, −15.59866160048803, −14.92969482347150, −14.54083670355847, −14.14598147295844, −13.39652643823348, −12.93408284899613, −12.49489214274861, −11.72843046048931, −11.30169928554776, −10.78304187020159, −10.08298947583866, −9.344672989122720, −8.622783562343726, −8.276795980082519, −7.542233015618757, −7.150221255600763, −6.017915336794983, −5.420819903290018, −4.867253326391264, −4.504585766907321, −3.806809866912113, −2.825833181366516, −2.288620776094795, −1.081410149549704, 0,
1.081410149549704, 2.288620776094795, 2.825833181366516, 3.806809866912113, 4.504585766907321, 4.867253326391264, 5.420819903290018, 6.017915336794983, 7.150221255600763, 7.542233015618757, 8.276795980082519, 8.622783562343726, 9.344672989122720, 10.08298947583866, 10.78304187020159, 11.30169928554776, 11.72843046048931, 12.49489214274861, 12.93408284899613, 13.39652643823348, 14.14598147295844, 14.54083670355847, 14.92969482347150, 15.59866160048803, 15.87951060060536