Properties

Label 2-16245-1.1-c1-0-7
Degree 22
Conductor 1624516245
Sign 1-1
Analytic cond. 129.716129.716
Root an. cond. 11.389311.3893
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 5-s + 4·7-s − 3·8-s − 10-s − 4·11-s − 2·13-s + 4·14-s − 16-s − 2·17-s + 20-s − 4·22-s + 4·23-s + 25-s − 2·26-s − 4·28-s − 2·29-s + 5·32-s − 2·34-s − 4·35-s + 6·37-s + 3·40-s − 6·41-s + 8·43-s + 4·44-s + 4·46-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.51·7-s − 1.06·8-s − 0.316·10-s − 1.20·11-s − 0.554·13-s + 1.06·14-s − 1/4·16-s − 0.485·17-s + 0.223·20-s − 0.852·22-s + 0.834·23-s + 1/5·25-s − 0.392·26-s − 0.755·28-s − 0.371·29-s + 0.883·32-s − 0.342·34-s − 0.676·35-s + 0.986·37-s + 0.474·40-s − 0.937·41-s + 1.21·43-s + 0.603·44-s + 0.589·46-s + ⋯

Functional equation

Λ(s)=(16245s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(16245s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 1624516245    =    3251923^{2} \cdot 5 \cdot 19^{2}
Sign: 1-1
Analytic conductor: 129.716129.716
Root analytic conductor: 11.389311.3893
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 16245, ( :1/2), 1)(2,\ 16245,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1+T 1 + T
19 1 1
good2 1T+pT2 1 - T + p T^{2}
7 14T+pT2 1 - 4 T + p T^{2}
11 1+4T+pT2 1 + 4 T + p T^{2}
13 1+2T+pT2 1 + 2 T + p T^{2}
17 1+2T+pT2 1 + 2 T + p T^{2}
23 14T+pT2 1 - 4 T + p T^{2}
29 1+2T+pT2 1 + 2 T + p T^{2}
31 1+pT2 1 + p T^{2}
37 16T+pT2 1 - 6 T + p T^{2}
41 1+6T+pT2 1 + 6 T + p T^{2}
43 18T+pT2 1 - 8 T + p T^{2}
47 112T+pT2 1 - 12 T + p T^{2}
53 1+14T+pT2 1 + 14 T + p T^{2}
59 14T+pT2 1 - 4 T + p T^{2}
61 114T+pT2 1 - 14 T + p T^{2}
67 14T+pT2 1 - 4 T + p T^{2}
71 1+pT2 1 + p T^{2}
73 1+14T+pT2 1 + 14 T + p T^{2}
79 1+16T+pT2 1 + 16 T + p T^{2}
83 1+pT2 1 + p T^{2}
89 1+6T+pT2 1 + 6 T + p T^{2}
97 110T+pT2 1 - 10 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−15.87951060060536, −15.59866160048803, −14.92969482347150, −14.54083670355847, −14.14598147295844, −13.39652643823348, −12.93408284899613, −12.49489214274861, −11.72843046048931, −11.30169928554776, −10.78304187020159, −10.08298947583866, −9.344672989122720, −8.622783562343726, −8.276795980082519, −7.542233015618757, −7.150221255600763, −6.017915336794983, −5.420819903290018, −4.867253326391264, −4.504585766907321, −3.806809866912113, −2.825833181366516, −2.288620776094795, −1.081410149549704, 0, 1.081410149549704, 2.288620776094795, 2.825833181366516, 3.806809866912113, 4.504585766907321, 4.867253326391264, 5.420819903290018, 6.017915336794983, 7.150221255600763, 7.542233015618757, 8.276795980082519, 8.622783562343726, 9.344672989122720, 10.08298947583866, 10.78304187020159, 11.30169928554776, 11.72843046048931, 12.49489214274861, 12.93408284899613, 13.39652643823348, 14.14598147295844, 14.54083670355847, 14.92969482347150, 15.59866160048803, 15.87951060060536

Graph of the ZZ-function along the critical line