Properties

Label 2-16245-1.1-c1-0-4
Degree $2$
Conductor $16245$
Sign $-1$
Analytic cond. $129.716$
Root an. cond. $11.3893$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 5-s − 4·7-s − 3·11-s + 2·13-s + 4·16-s − 6·17-s − 2·20-s + 25-s + 8·28-s + 3·29-s − 7·31-s − 4·35-s + 8·37-s + 6·41-s − 4·43-s + 6·44-s − 6·47-s + 9·49-s − 4·52-s + 6·53-s − 3·55-s + 15·59-s + 5·61-s − 8·64-s + 2·65-s + 2·67-s + ⋯
L(s)  = 1  − 4-s + 0.447·5-s − 1.51·7-s − 0.904·11-s + 0.554·13-s + 16-s − 1.45·17-s − 0.447·20-s + 1/5·25-s + 1.51·28-s + 0.557·29-s − 1.25·31-s − 0.676·35-s + 1.31·37-s + 0.937·41-s − 0.609·43-s + 0.904·44-s − 0.875·47-s + 9/7·49-s − 0.554·52-s + 0.824·53-s − 0.404·55-s + 1.95·59-s + 0.640·61-s − 64-s + 0.248·65-s + 0.244·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16245\)    =    \(3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(129.716\)
Root analytic conductor: \(11.3893\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 16245,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
19 \( 1 \)
good2 \( 1 + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 15 T + p T^{2} \)
61 \( 1 - 5 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 8 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 15 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.30119689098478, −15.76343004709598, −15.10875206008760, −14.53473324374217, −13.80838973296866, −13.25813792310624, −12.98045060402339, −12.79172747321526, −11.82154761588390, −10.99027232124414, −10.53614897958416, −9.750125168316176, −9.585535982538966, −8.840256661932381, −8.421781329169140, −7.628873009475114, −6.771058136690333, −6.342456284513648, −5.606872878582650, −5.091029581597595, −4.190628396962405, −3.684027013863426, −2.851846828219073, −2.187955992227127, −0.8353148224984355, 0, 0.8353148224984355, 2.187955992227127, 2.851846828219073, 3.684027013863426, 4.190628396962405, 5.091029581597595, 5.606872878582650, 6.342456284513648, 6.771058136690333, 7.628873009475114, 8.421781329169140, 8.840256661932381, 9.585535982538966, 9.750125168316176, 10.53614897958416, 10.99027232124414, 11.82154761588390, 12.79172747321526, 12.98045060402339, 13.25813792310624, 13.80838973296866, 14.53473324374217, 15.10875206008760, 15.76343004709598, 16.30119689098478

Graph of the $Z$-function along the critical line