Properties

Label 2-16245-1.1-c1-0-10
Degree $2$
Conductor $16245$
Sign $-1$
Analytic cond. $129.716$
Root an. cond. $11.3893$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5-s + 2·7-s + 3·11-s + 4·13-s + 4·16-s + 2·20-s + 6·23-s + 25-s − 4·28-s + 3·29-s − 5·31-s − 2·35-s − 8·37-s − 6·41-s − 4·43-s − 6·44-s − 6·47-s − 3·49-s − 8·52-s − 6·53-s − 3·55-s − 9·59-s − 7·61-s − 8·64-s − 4·65-s − 2·67-s + ⋯
L(s)  = 1  − 4-s − 0.447·5-s + 0.755·7-s + 0.904·11-s + 1.10·13-s + 16-s + 0.447·20-s + 1.25·23-s + 1/5·25-s − 0.755·28-s + 0.557·29-s − 0.898·31-s − 0.338·35-s − 1.31·37-s − 0.937·41-s − 0.609·43-s − 0.904·44-s − 0.875·47-s − 3/7·49-s − 1.10·52-s − 0.824·53-s − 0.404·55-s − 1.17·59-s − 0.896·61-s − 64-s − 0.496·65-s − 0.244·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16245\)    =    \(3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(129.716\)
Root analytic conductor: \(11.3893\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 16245,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
19 \( 1 \)
good2 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 7 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.24829612810809, −15.63334310445578, −14.86813195076504, −14.68151000234201, −13.96789764479291, −13.52058928395821, −12.99253657647404, −12.27989656472158, −11.80573222586068, −11.13023482981508, −10.70603162170148, −10.00126661624895, −9.066072187159856, −8.957344399867594, −8.277149390922542, −7.777426039744632, −6.939666790693225, −6.342751220658681, −5.516633157935133, −4.815609230056924, −4.453717839069794, −3.462008683487843, −3.293612713999307, −1.660432324832200, −1.206162012622432, 0, 1.206162012622432, 1.660432324832200, 3.293612713999307, 3.462008683487843, 4.453717839069794, 4.815609230056924, 5.516633157935133, 6.342751220658681, 6.939666790693225, 7.777426039744632, 8.277149390922542, 8.957344399867594, 9.066072187159856, 10.00126661624895, 10.70603162170148, 11.13023482981508, 11.80573222586068, 12.27989656472158, 12.99253657647404, 13.52058928395821, 13.96789764479291, 14.68151000234201, 14.86813195076504, 15.63334310445578, 16.24829612810809

Graph of the $Z$-function along the critical line