L(s) = 1 | + (−0.5 − 0.866i)5-s + (1.36 − 2.36i)7-s + (0.866 − 1.5i)11-s + (−2.73 − 4.73i)13-s + 4.73·17-s − 4.46·19-s + (1.73 + 3i)23-s + (−0.499 + 0.866i)25-s + (−3.86 + 6.69i)29-s + (−2.96 − 5.13i)31-s − 2.73·35-s − 6.19·37-s + (−5.59 − 9.69i)41-s + (−1.63 + 2.83i)43-s + (−0.633 + 1.09i)47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (0.516 − 0.894i)7-s + (0.261 − 0.452i)11-s + (−0.757 − 1.31i)13-s + 1.14·17-s − 1.02·19-s + (0.361 + 0.625i)23-s + (−0.0999 + 0.173i)25-s + (−0.717 + 1.24i)29-s + (−0.532 − 0.922i)31-s − 0.461·35-s − 1.01·37-s + (−0.874 − 1.51i)41-s + (−0.249 + 0.431i)43-s + (−0.0924 + 0.160i)47-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(−0.642+0.766i)Λ(2−s)
Λ(s)=(=(1620s/2ΓC(s+1/2)L(s)(−0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
−0.642+0.766i
|
Analytic conductor: |
12.9357 |
Root analytic conductor: |
3.59663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(541,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :1/2), −0.642+0.766i)
|
Particular Values
L(1) |
≈ |
1.204202104 |
L(21) |
≈ |
1.204202104 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
good | 7 | 1+(−1.36+2.36i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.866+1.5i)T+(−5.5−9.52i)T2 |
| 13 | 1+(2.73+4.73i)T+(−6.5+11.2i)T2 |
| 17 | 1−4.73T+17T2 |
| 19 | 1+4.46T+19T2 |
| 23 | 1+(−1.73−3i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.86−6.69i)T+(−14.5−25.1i)T2 |
| 31 | 1+(2.96+5.13i)T+(−15.5+26.8i)T2 |
| 37 | 1+6.19T+37T2 |
| 41 | 1+(5.59+9.69i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.63−2.83i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.633−1.09i)T+(−23.5−40.7i)T2 |
| 53 | 1−7.26T+53T2 |
| 59 | 1+(3.86+6.69i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−2+3.46i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.19+5.53i)T+(−33.5+58.0i)T2 |
| 71 | 1−11.1T+71T2 |
| 73 | 1+0.196T+73T2 |
| 79 | 1+(−7.19+12.4i)T+(−39.5−68.4i)T2 |
| 83 | 1+(7.56−13.0i)T+(−41.5−71.8i)T2 |
| 89 | 1+5.19T+89T2 |
| 97 | 1+(0.366−0.633i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.058410935713674418508015546845, −8.176383333129909123921049612641, −7.61274507021519526990620715933, −6.89550435391969659932670409428, −5.58111159542779789902313269425, −5.10862584647076982724371561991, −3.94274339970630202709366820004, −3.23429752574645418149738603844, −1.69408132961571602188841322198, −0.45586241715998568903518467537,
1.73573661814151542267623526451, 2.56060835470871805314430156297, 3.83246052561741967921598481315, 4.72045635025100401508336567684, 5.55052999413787059335797801356, 6.59873461651712085522685444979, 7.18950251848095663340745154083, 8.184709350317208955006408567364, 8.843700058052850983277104623774, 9.658481382652946378741387521913