L(s) = 1 | + (−0.5 − 0.866i)5-s + (1.36 − 2.36i)7-s + (0.866 − 1.5i)11-s + (−2.73 − 4.73i)13-s + 4.73·17-s − 4.46·19-s + (1.73 + 3i)23-s + (−0.499 + 0.866i)25-s + (−3.86 + 6.69i)29-s + (−2.96 − 5.13i)31-s − 2.73·35-s − 6.19·37-s + (−5.59 − 9.69i)41-s + (−1.63 + 2.83i)43-s + (−0.633 + 1.09i)47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (0.516 − 0.894i)7-s + (0.261 − 0.452i)11-s + (−0.757 − 1.31i)13-s + 1.14·17-s − 1.02·19-s + (0.361 + 0.625i)23-s + (−0.0999 + 0.173i)25-s + (−0.717 + 1.24i)29-s + (−0.532 − 0.922i)31-s − 0.461·35-s − 1.01·37-s + (−0.874 − 1.51i)41-s + (−0.249 + 0.431i)43-s + (−0.0924 + 0.160i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.204202104\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.204202104\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-1.36 + 2.36i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 1.5i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.73 + 4.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.73T + 17T^{2} \) |
| 19 | \( 1 + 4.46T + 19T^{2} \) |
| 23 | \( 1 + (-1.73 - 3i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.86 - 6.69i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.96 + 5.13i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6.19T + 37T^{2} \) |
| 41 | \( 1 + (5.59 + 9.69i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.63 - 2.83i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.633 - 1.09i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 7.26T + 53T^{2} \) |
| 59 | \( 1 + (3.86 + 6.69i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2 + 3.46i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.19 + 5.53i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.1T + 71T^{2} \) |
| 73 | \( 1 + 0.196T + 73T^{2} \) |
| 79 | \( 1 + (-7.19 + 12.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.56 - 13.0i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 5.19T + 89T^{2} \) |
| 97 | \( 1 + (0.366 - 0.633i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.058410935713674418508015546845, −8.176383333129909123921049612641, −7.61274507021519526990620715933, −6.89550435391969659932670409428, −5.58111159542779789902313269425, −5.10862584647076982724371561991, −3.94274339970630202709366820004, −3.23429752574645418149738603844, −1.69408132961571602188841322198, −0.45586241715998568903518467537,
1.73573661814151542267623526451, 2.56060835470871805314430156297, 3.83246052561741967921598481315, 4.72045635025100401508336567684, 5.55052999413787059335797801356, 6.59873461651712085522685444979, 7.18950251848095663340745154083, 8.184709350317208955006408567364, 8.843700058052850983277104623774, 9.658481382652946378741387521913