L(s) = 1 | + (2.5 − 4.33i)5-s + (14 + 24.2i)7-s + (12 + 20.7i)11-s + (35 − 60.6i)13-s + 102·17-s + 20·19-s + (36 − 62.3i)23-s + (−12.5 − 21.6i)25-s + (−153 − 265. i)29-s + (68 − 117. i)31-s + 140·35-s − 214·37-s + (75 − 129. i)41-s + (146 + 252. i)43-s + (36 + 62.3i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (0.755 + 1.30i)7-s + (0.328 + 0.569i)11-s + (0.746 − 1.29i)13-s + 1.45·17-s + 0.241·19-s + (0.326 − 0.565i)23-s + (−0.100 − 0.173i)25-s + (−0.979 − 1.69i)29-s + (0.393 − 0.682i)31-s + 0.676·35-s − 0.950·37-s + (0.285 − 0.494i)41-s + (0.517 + 0.896i)43-s + (0.111 + 0.193i)47-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(0.939+0.342i)Λ(4−s)
Λ(s)=(=(1620s/2ΓC(s+3/2)L(s)(0.939+0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
0.939+0.342i
|
Analytic conductor: |
95.5830 |
Root analytic conductor: |
9.77666 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(1081,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :3/2), 0.939+0.342i)
|
Particular Values
L(2) |
≈ |
2.925288977 |
L(21) |
≈ |
2.925288977 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−2.5+4.33i)T |
good | 7 | 1+(−14−24.2i)T+(−171.5+297.i)T2 |
| 11 | 1+(−12−20.7i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+(−35+60.6i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1−102T+4.91e3T2 |
| 19 | 1−20T+6.85e3T2 |
| 23 | 1+(−36+62.3i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(153+265.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+(−68+117.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+214T+5.06e4T2 |
| 41 | 1+(−75+129.i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(−146−252.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−36−62.3i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+414T+1.48e5T2 |
| 59 | 1+(−372+644.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−209−361.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(94−162.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−480T+3.57e5T2 |
| 73 | 1−434T+3.89e5T2 |
| 79 | 1+(676+1.17e3i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+(−306−530.i)T+(−2.85e5+4.95e5i)T2 |
| 89 | 1+30T+7.04e5T2 |
| 97 | 1+(−143−247.i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.004950288388443492818748560512, −8.038271361946161501970497748082, −7.80420787189111440276171276538, −6.32354982596190584996862678230, −5.59943108236760566824742908738, −5.11547745629316050356351775688, −3.93901412510655582070102294841, −2.81209350492732998515621274386, −1.84197804878582479252471801470, −0.75947991292065423044074001193,
1.05097088206094220398406702252, 1.64826094086859136519938954158, 3.33980812878794745722594568203, 3.84371858473859105265148134215, 4.95052222643614238358329786420, 5.80833882506336601245316338744, 6.91549750502524689844509254828, 7.28341902959714912689409168425, 8.273532226706615999655988689460, 9.058430558841057384794197740581