L(s) = 1 | + (0.5 − 0.866i)5-s + (−0.366 − 0.633i)7-s + (0.866 + 1.5i)11-s + (0.732 − 1.26i)13-s − 1.26·17-s + 2.46·19-s + (1.73 − 3i)23-s + (−0.499 − 0.866i)25-s + (2.13 + 3.69i)29-s + (3.96 − 6.86i)31-s − 0.732·35-s + 4.19·37-s + (0.401 − 0.696i)41-s + (−3.36 − 5.83i)43-s + (2.36 + 4.09i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (−0.138 − 0.239i)7-s + (0.261 + 0.452i)11-s + (0.203 − 0.351i)13-s − 0.307·17-s + 0.565·19-s + (0.361 − 0.625i)23-s + (−0.0999 − 0.173i)25-s + (0.396 + 0.686i)29-s + (0.711 − 1.23i)31-s − 0.123·35-s + 0.689·37-s + (0.0627 − 0.108i)41-s + (−0.513 − 0.889i)43-s + (0.345 + 0.597i)47-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(0.642+0.766i)Λ(2−s)
Λ(s)=(=(1620s/2ΓC(s+1/2)L(s)(0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
0.642+0.766i
|
Analytic conductor: |
12.9357 |
Root analytic conductor: |
3.59663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(1081,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :1/2), 0.642+0.766i)
|
Particular Values
L(1) |
≈ |
1.737224623 |
L(21) |
≈ |
1.737224623 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.5+0.866i)T |
good | 7 | 1+(0.366+0.633i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−0.866−1.5i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−0.732+1.26i)T+(−6.5−11.2i)T2 |
| 17 | 1+1.26T+17T2 |
| 19 | 1−2.46T+19T2 |
| 23 | 1+(−1.73+3i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.13−3.69i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−3.96+6.86i)T+(−15.5−26.8i)T2 |
| 37 | 1−4.19T+37T2 |
| 41 | 1+(−0.401+0.696i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.36+5.83i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−2.36−4.09i)T+(−23.5+40.7i)T2 |
| 53 | 1+10.7T+53T2 |
| 59 | 1+(−2.13+3.69i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2−3.46i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7.19+12.4i)T+(−33.5−58.0i)T2 |
| 71 | 1+0.803T+71T2 |
| 73 | 1−10.1T+73T2 |
| 79 | 1+(3.19+5.53i)T+(−39.5+68.4i)T2 |
| 83 | 1+(4.56+7.90i)T+(−41.5+71.8i)T2 |
| 89 | 1+5.19T+89T2 |
| 97 | 1+(−1.36−2.36i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.341691004926548433649776213320, −8.515799349846804794505756762891, −7.73597881156011754866160024298, −6.83875699169215445204378109869, −6.08642069652963399029927411949, −5.09143726527632559171599928767, −4.33582107847498803953399312772, −3.27167056965582197922978959604, −2.10526354074546352033617889543, −0.77484711188084090977357244211,
1.21733416237829936893073573232, 2.57229822579732747643466573371, 3.42883372336940212003047841801, 4.50566069069556445041736967464, 5.50738025480898550302218151210, 6.32942161225038323282827338987, 6.97681224019572989391786094236, 7.970957091270820498142075215082, 8.747316199043512435041299928404, 9.537945349303752683151114247292