Properties

Label 2-1620-9.4-c1-0-10
Degree 22
Conductor 16201620
Sign 0.173+0.984i0.173 + 0.984i
Analytic cond. 12.935712.9357
Root an. cond. 3.596633.59663
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)5-s + (−1 − 1.73i)7-s + (−1 + 1.73i)13-s + 3·17-s + 5·19-s + (1.5 − 2.59i)23-s + (−0.499 − 0.866i)25-s + (−3 − 5.19i)29-s + (−2.5 + 4.33i)31-s − 1.99·35-s + 2·37-s + (6 − 10.3i)41-s + (−4 − 6.92i)43-s + (−6 − 10.3i)47-s + (1.50 − 2.59i)49-s + ⋯
L(s)  = 1  + (0.223 − 0.387i)5-s + (−0.377 − 0.654i)7-s + (−0.277 + 0.480i)13-s + 0.727·17-s + 1.14·19-s + (0.312 − 0.541i)23-s + (−0.0999 − 0.173i)25-s + (−0.557 − 0.964i)29-s + (−0.449 + 0.777i)31-s − 0.338·35-s + 0.328·37-s + (0.937 − 1.62i)41-s + (−0.609 − 1.05i)43-s + (−0.875 − 1.51i)47-s + (0.214 − 0.371i)49-s + ⋯

Functional equation

Λ(s)=(1620s/2ΓC(s)L(s)=((0.173+0.984i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1620s/2ΓC(s+1/2)L(s)=((0.173+0.984i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 16201620    =    223452^{2} \cdot 3^{4} \cdot 5
Sign: 0.173+0.984i0.173 + 0.984i
Analytic conductor: 12.935712.9357
Root analytic conductor: 3.596633.59663
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1620(1081,)\chi_{1620} (1081, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1620, ( :1/2), 0.173+0.984i)(2,\ 1620,\ (\ :1/2),\ 0.173 + 0.984i)

Particular Values

L(1)L(1) \approx 1.5243744991.524374499
L(12)L(\frac12) \approx 1.5243744991.524374499
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
good7 1+(1+1.73i)T+(3.5+6.06i)T2 1 + (1 + 1.73i)T + (-3.5 + 6.06i)T^{2}
11 1+(5.5+9.52i)T2 1 + (-5.5 + 9.52i)T^{2}
13 1+(11.73i)T+(6.511.2i)T2 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2}
17 13T+17T2 1 - 3T + 17T^{2}
19 15T+19T2 1 - 5T + 19T^{2}
23 1+(1.5+2.59i)T+(11.519.9i)T2 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2}
29 1+(3+5.19i)T+(14.5+25.1i)T2 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2}
31 1+(2.54.33i)T+(15.526.8i)T2 1 + (2.5 - 4.33i)T + (-15.5 - 26.8i)T^{2}
37 12T+37T2 1 - 2T + 37T^{2}
41 1+(6+10.3i)T+(20.535.5i)T2 1 + (-6 + 10.3i)T + (-20.5 - 35.5i)T^{2}
43 1+(4+6.92i)T+(21.5+37.2i)T2 1 + (4 + 6.92i)T + (-21.5 + 37.2i)T^{2}
47 1+(6+10.3i)T+(23.5+40.7i)T2 1 + (6 + 10.3i)T + (-23.5 + 40.7i)T^{2}
53 13T+53T2 1 - 3T + 53T^{2}
59 1+(3+5.19i)T+(29.551.0i)T2 1 + (-3 + 5.19i)T + (-29.5 - 51.0i)T^{2}
61 1+(3.56.06i)T+(30.5+52.8i)T2 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2}
67 1+(11.73i)T+(33.558.0i)T2 1 + (1 - 1.73i)T + (-33.5 - 58.0i)T^{2}
71 1+12T+71T2 1 + 12T + 71T^{2}
73 1+16T+73T2 1 + 16T + 73T^{2}
79 1+(0.50.866i)T+(39.5+68.4i)T2 1 + (-0.5 - 0.866i)T + (-39.5 + 68.4i)T^{2}
83 1+(7.5+12.9i)T+(41.5+71.8i)T2 1 + (7.5 + 12.9i)T + (-41.5 + 71.8i)T^{2}
89 112T+89T2 1 - 12T + 89T^{2}
97 1+(813.8i)T+(48.5+84.0i)T2 1 + (-8 - 13.8i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.229878683424296962663505641322, −8.540608620559694123648541416883, −7.42353419162335916711038543214, −7.02402798258473775936452474587, −5.86131873523810069205181729905, −5.15833923064090687449860109703, −4.11685894741917049189733146477, −3.28028393323370994930025626178, −1.96884560660324572121077180159, −0.63043147536621173449072760429, 1.34170110184150463463131333010, 2.78976220853864652860273553189, 3.31939411859317928661593182603, 4.70216987705528096228663152106, 5.64784628382244551014933536032, 6.15296500148472383129224226925, 7.34593049514981749829029524624, 7.79115672846270028165862531331, 8.942810603845708943826866275967, 9.627096946625867461752248566673

Graph of the ZZ-function along the critical line