L(s) = 1 | − 5-s + 0.732·7-s − 1.73·11-s − 1.46·13-s − 1.26·17-s + 2.46·19-s − 3.46·23-s + 25-s − 4.26·29-s − 7.92·31-s − 0.732·35-s + 4.19·37-s − 0.803·41-s + 6.73·43-s − 4.73·47-s − 6.46·49-s − 10.7·53-s + 1.73·55-s − 4.26·59-s − 4·61-s + 1.46·65-s − 14.3·67-s − 0.803·71-s + 10.1·73-s − 1.26·77-s + 6.39·79-s + 9.12·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.276·7-s − 0.522·11-s − 0.406·13-s − 0.307·17-s + 0.565·19-s − 0.722·23-s + 0.200·25-s − 0.792·29-s − 1.42·31-s − 0.123·35-s + 0.689·37-s − 0.125·41-s + 1.02·43-s − 0.690·47-s − 0.923·49-s − 1.47·53-s + 0.233·55-s − 0.555·59-s − 0.512·61-s + 0.181·65-s − 1.75·67-s − 0.0953·71-s + 1.19·73-s − 0.144·77-s + 0.719·79-s + 1.00·83-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1620s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
good | 7 | 1−0.732T+7T2 |
| 11 | 1+1.73T+11T2 |
| 13 | 1+1.46T+13T2 |
| 17 | 1+1.26T+17T2 |
| 19 | 1−2.46T+19T2 |
| 23 | 1+3.46T+23T2 |
| 29 | 1+4.26T+29T2 |
| 31 | 1+7.92T+31T2 |
| 37 | 1−4.19T+37T2 |
| 41 | 1+0.803T+41T2 |
| 43 | 1−6.73T+43T2 |
| 47 | 1+4.73T+47T2 |
| 53 | 1+10.7T+53T2 |
| 59 | 1+4.26T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1+14.3T+67T2 |
| 71 | 1+0.803T+71T2 |
| 73 | 1−10.1T+73T2 |
| 79 | 1−6.39T+79T2 |
| 83 | 1−9.12T+83T2 |
| 89 | 1+5.19T+89T2 |
| 97 | 1+2.73T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.110609864033189596256480630968, −7.900682435361490441100623140208, −7.69392605497610704803702373014, −6.62949699463280974395363368609, −5.64426769097997952436996383696, −4.84235530744126004225656247974, −3.92384276627848462930723316495, −2.90305631375347707399054116567, −1.71908120656316357702035224078, 0,
1.71908120656316357702035224078, 2.90305631375347707399054116567, 3.92384276627848462930723316495, 4.84235530744126004225656247974, 5.64426769097997952436996383696, 6.62949699463280974395363368609, 7.69392605497610704803702373014, 7.900682435361490441100623140208, 9.110609864033189596256480630968