L(s) = 1 | − 5-s + 0.732·7-s − 1.73·11-s − 1.46·13-s − 1.26·17-s + 2.46·19-s − 3.46·23-s + 25-s − 4.26·29-s − 7.92·31-s − 0.732·35-s + 4.19·37-s − 0.803·41-s + 6.73·43-s − 4.73·47-s − 6.46·49-s − 10.7·53-s + 1.73·55-s − 4.26·59-s − 4·61-s + 1.46·65-s − 14.3·67-s − 0.803·71-s + 10.1·73-s − 1.26·77-s + 6.39·79-s + 9.12·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.276·7-s − 0.522·11-s − 0.406·13-s − 0.307·17-s + 0.565·19-s − 0.722·23-s + 0.200·25-s − 0.792·29-s − 1.42·31-s − 0.123·35-s + 0.689·37-s − 0.125·41-s + 1.02·43-s − 0.690·47-s − 0.923·49-s − 1.47·53-s + 0.233·55-s − 0.555·59-s − 0.512·61-s + 0.181·65-s − 1.75·67-s − 0.0953·71-s + 1.19·73-s − 0.144·77-s + 0.719·79-s + 1.00·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 - 0.732T + 7T^{2} \) |
| 11 | \( 1 + 1.73T + 11T^{2} \) |
| 13 | \( 1 + 1.46T + 13T^{2} \) |
| 17 | \( 1 + 1.26T + 17T^{2} \) |
| 19 | \( 1 - 2.46T + 19T^{2} \) |
| 23 | \( 1 + 3.46T + 23T^{2} \) |
| 29 | \( 1 + 4.26T + 29T^{2} \) |
| 31 | \( 1 + 7.92T + 31T^{2} \) |
| 37 | \( 1 - 4.19T + 37T^{2} \) |
| 41 | \( 1 + 0.803T + 41T^{2} \) |
| 43 | \( 1 - 6.73T + 43T^{2} \) |
| 47 | \( 1 + 4.73T + 47T^{2} \) |
| 53 | \( 1 + 10.7T + 53T^{2} \) |
| 59 | \( 1 + 4.26T + 59T^{2} \) |
| 61 | \( 1 + 4T + 61T^{2} \) |
| 67 | \( 1 + 14.3T + 67T^{2} \) |
| 71 | \( 1 + 0.803T + 71T^{2} \) |
| 73 | \( 1 - 10.1T + 73T^{2} \) |
| 79 | \( 1 - 6.39T + 79T^{2} \) |
| 83 | \( 1 - 9.12T + 83T^{2} \) |
| 89 | \( 1 + 5.19T + 89T^{2} \) |
| 97 | \( 1 + 2.73T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.110609864033189596256480630968, −7.900682435361490441100623140208, −7.69392605497610704803702373014, −6.62949699463280974395363368609, −5.64426769097997952436996383696, −4.84235530744126004225656247974, −3.92384276627848462930723316495, −2.90305631375347707399054116567, −1.71908120656316357702035224078, 0,
1.71908120656316357702035224078, 2.90305631375347707399054116567, 3.92384276627848462930723316495, 4.84235530744126004225656247974, 5.64426769097997952436996383696, 6.62949699463280974395363368609, 7.69392605497610704803702373014, 7.900682435361490441100623140208, 9.110609864033189596256480630968