Properties

Label 2-1620-1.1-c1-0-12
Degree $2$
Conductor $1620$
Sign $-1$
Analytic cond. $12.9357$
Root an. cond. $3.59663$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 0.732·7-s − 1.73·11-s − 1.46·13-s − 1.26·17-s + 2.46·19-s − 3.46·23-s + 25-s − 4.26·29-s − 7.92·31-s − 0.732·35-s + 4.19·37-s − 0.803·41-s + 6.73·43-s − 4.73·47-s − 6.46·49-s − 10.7·53-s + 1.73·55-s − 4.26·59-s − 4·61-s + 1.46·65-s − 14.3·67-s − 0.803·71-s + 10.1·73-s − 1.26·77-s + 6.39·79-s + 9.12·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.276·7-s − 0.522·11-s − 0.406·13-s − 0.307·17-s + 0.565·19-s − 0.722·23-s + 0.200·25-s − 0.792·29-s − 1.42·31-s − 0.123·35-s + 0.689·37-s − 0.125·41-s + 1.02·43-s − 0.690·47-s − 0.923·49-s − 1.47·53-s + 0.233·55-s − 0.555·59-s − 0.512·61-s + 0.181·65-s − 1.75·67-s − 0.0953·71-s + 1.19·73-s − 0.144·77-s + 0.719·79-s + 1.00·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1620\)    =    \(2^{2} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(12.9357\)
Root analytic conductor: \(3.59663\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1620,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 0.732T + 7T^{2} \)
11 \( 1 + 1.73T + 11T^{2} \)
13 \( 1 + 1.46T + 13T^{2} \)
17 \( 1 + 1.26T + 17T^{2} \)
19 \( 1 - 2.46T + 19T^{2} \)
23 \( 1 + 3.46T + 23T^{2} \)
29 \( 1 + 4.26T + 29T^{2} \)
31 \( 1 + 7.92T + 31T^{2} \)
37 \( 1 - 4.19T + 37T^{2} \)
41 \( 1 + 0.803T + 41T^{2} \)
43 \( 1 - 6.73T + 43T^{2} \)
47 \( 1 + 4.73T + 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 + 4.26T + 59T^{2} \)
61 \( 1 + 4T + 61T^{2} \)
67 \( 1 + 14.3T + 67T^{2} \)
71 \( 1 + 0.803T + 71T^{2} \)
73 \( 1 - 10.1T + 73T^{2} \)
79 \( 1 - 6.39T + 79T^{2} \)
83 \( 1 - 9.12T + 83T^{2} \)
89 \( 1 + 5.19T + 89T^{2} \)
97 \( 1 + 2.73T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.110609864033189596256480630968, −7.900682435361490441100623140208, −7.69392605497610704803702373014, −6.62949699463280974395363368609, −5.64426769097997952436996383696, −4.84235530744126004225656247974, −3.92384276627848462930723316495, −2.90305631375347707399054116567, −1.71908120656316357702035224078, 0, 1.71908120656316357702035224078, 2.90305631375347707399054116567, 3.92384276627848462930723316495, 4.84235530744126004225656247974, 5.64426769097997952436996383696, 6.62949699463280974395363368609, 7.69392605497610704803702373014, 7.900682435361490441100623140208, 9.110609864033189596256480630968

Graph of the $Z$-function along the critical line