L(s) = 1 | + (0.893 − 0.448i)2-s + (1.51 − 0.845i)3-s + (0.597 − 0.802i)4-s + (−0.379 + 1.26i)5-s + (0.971 − 1.43i)6-s + (−0.768 + 1.78i)7-s + (0.173 − 0.984i)8-s + (1.57 − 2.55i)9-s + (0.229 + 1.30i)10-s + (−2.10 − 0.499i)11-s + (0.224 − 1.71i)12-s + (−1.69 + 1.11i)13-s + (0.112 + 1.93i)14-s + (0.497 + 2.23i)15-s + (−0.286 − 0.957i)16-s + (−7.02 − 2.55i)17-s + ⋯ |
L(s) = 1 | + (0.631 − 0.317i)2-s + (0.872 − 0.488i)3-s + (0.298 − 0.401i)4-s + (−0.169 + 0.566i)5-s + (0.396 − 0.585i)6-s + (−0.290 + 0.673i)7-s + (0.0613 − 0.348i)8-s + (0.523 − 0.851i)9-s + (0.0726 + 0.412i)10-s + (−0.635 − 0.150i)11-s + (0.0648 − 0.495i)12-s + (−0.471 + 0.309i)13-s + (0.0301 + 0.517i)14-s + (0.128 + 0.577i)15-s + (−0.0717 − 0.239i)16-s + (−1.70 − 0.619i)17-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(0.826+0.563i)Λ(2−s)
Λ(s)=(=(162s/2ΓC(s+1/2)L(s)(0.826+0.563i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
0.826+0.563i
|
Analytic conductor: |
1.29357 |
Root analytic conductor: |
1.13735 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :1/2), 0.826+0.563i)
|
Particular Values
L(1) |
≈ |
1.75815−0.542027i |
L(21) |
≈ |
1.75815−0.542027i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.893+0.448i)T |
| 3 | 1+(−1.51+0.845i)T |
good | 5 | 1+(0.379−1.26i)T+(−4.17−2.74i)T2 |
| 7 | 1+(0.768−1.78i)T+(−4.80−5.09i)T2 |
| 11 | 1+(2.10+0.499i)T+(9.82+4.93i)T2 |
| 13 | 1+(1.69−1.11i)T+(5.14−11.9i)T2 |
| 17 | 1+(7.02+2.55i)T+(13.0+10.9i)T2 |
| 19 | 1+(−2.13+0.776i)T+(14.5−12.2i)T2 |
| 23 | 1+(−1.34−3.12i)T+(−15.7+16.7i)T2 |
| 29 | 1+(0.282−4.85i)T+(−28.8−3.36i)T2 |
| 31 | 1+(−5.07−0.593i)T+(30.1+7.14i)T2 |
| 37 | 1+(−4.70+3.95i)T+(6.42−36.4i)T2 |
| 41 | 1+(6.98+3.50i)T+(24.4+32.8i)T2 |
| 43 | 1+(4.77−5.06i)T+(−2.50−42.9i)T2 |
| 47 | 1+(−4.18+0.489i)T+(45.7−10.8i)T2 |
| 53 | 1+(5.39+9.34i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−6.72+1.59i)T+(52.7−26.4i)T2 |
| 61 | 1+(5.37+7.22i)T+(−17.4+58.4i)T2 |
| 67 | 1+(−0.661−11.3i)T+(−66.5+7.77i)T2 |
| 71 | 1+(−0.518−2.93i)T+(−66.7+24.2i)T2 |
| 73 | 1+(−1.80+10.2i)T+(−68.5−24.9i)T2 |
| 79 | 1+(−9.16+4.60i)T+(47.1−63.3i)T2 |
| 83 | 1+(−3.24+1.62i)T+(49.5−66.5i)T2 |
| 89 | 1+(−1.42+8.10i)T+(−83.6−30.4i)T2 |
| 97 | 1+(2.30+7.70i)T+(−81.0+53.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.97451261709878170533866314158, −11.92648594114697248770163198876, −11.00164397893555184481316029717, −9.662224409704637151712914945783, −8.748880957263855169509662424950, −7.33634388920758710470151894067, −6.51779014768770218148427810369, −4.92133680838536423851680710945, −3.26663303651104179350910083746, −2.33405441117148183421818350509,
2.63315780385185401385809354712, 4.13645821561245840735979459930, 4.91625471803565595118624520757, 6.65072608839464935183486837356, 7.84755644307340192056579291835, 8.667280371216183278436065813415, 9.948613477604685201377437716990, 10.84794429737321200813015794386, 12.30754034306689090318410998372, 13.31077528081622393229804198323