Properties

Label 2-162-81.25-c1-0-7
Degree $2$
Conductor $162$
Sign $0.826 + 0.563i$
Analytic cond. $1.29357$
Root an. cond. $1.13735$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.893 − 0.448i)2-s + (1.51 − 0.845i)3-s + (0.597 − 0.802i)4-s + (−0.379 + 1.26i)5-s + (0.971 − 1.43i)6-s + (−0.768 + 1.78i)7-s + (0.173 − 0.984i)8-s + (1.57 − 2.55i)9-s + (0.229 + 1.30i)10-s + (−2.10 − 0.499i)11-s + (0.224 − 1.71i)12-s + (−1.69 + 1.11i)13-s + (0.112 + 1.93i)14-s + (0.497 + 2.23i)15-s + (−0.286 − 0.957i)16-s + (−7.02 − 2.55i)17-s + ⋯
L(s)  = 1  + (0.631 − 0.317i)2-s + (0.872 − 0.488i)3-s + (0.298 − 0.401i)4-s + (−0.169 + 0.566i)5-s + (0.396 − 0.585i)6-s + (−0.290 + 0.673i)7-s + (0.0613 − 0.348i)8-s + (0.523 − 0.851i)9-s + (0.0726 + 0.412i)10-s + (−0.635 − 0.150i)11-s + (0.0648 − 0.495i)12-s + (−0.471 + 0.309i)13-s + (0.0301 + 0.517i)14-s + (0.128 + 0.577i)15-s + (−0.0717 − 0.239i)16-s + (−1.70 − 0.619i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.826 + 0.563i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.826 + 0.563i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $0.826 + 0.563i$
Analytic conductor: \(1.29357\)
Root analytic conductor: \(1.13735\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :1/2),\ 0.826 + 0.563i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.75815 - 0.542027i\)
\(L(\frac12)\) \(\approx\) \(1.75815 - 0.542027i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.893 + 0.448i)T \)
3 \( 1 + (-1.51 + 0.845i)T \)
good5 \( 1 + (0.379 - 1.26i)T + (-4.17 - 2.74i)T^{2} \)
7 \( 1 + (0.768 - 1.78i)T + (-4.80 - 5.09i)T^{2} \)
11 \( 1 + (2.10 + 0.499i)T + (9.82 + 4.93i)T^{2} \)
13 \( 1 + (1.69 - 1.11i)T + (5.14 - 11.9i)T^{2} \)
17 \( 1 + (7.02 + 2.55i)T + (13.0 + 10.9i)T^{2} \)
19 \( 1 + (-2.13 + 0.776i)T + (14.5 - 12.2i)T^{2} \)
23 \( 1 + (-1.34 - 3.12i)T + (-15.7 + 16.7i)T^{2} \)
29 \( 1 + (0.282 - 4.85i)T + (-28.8 - 3.36i)T^{2} \)
31 \( 1 + (-5.07 - 0.593i)T + (30.1 + 7.14i)T^{2} \)
37 \( 1 + (-4.70 + 3.95i)T + (6.42 - 36.4i)T^{2} \)
41 \( 1 + (6.98 + 3.50i)T + (24.4 + 32.8i)T^{2} \)
43 \( 1 + (4.77 - 5.06i)T + (-2.50 - 42.9i)T^{2} \)
47 \( 1 + (-4.18 + 0.489i)T + (45.7 - 10.8i)T^{2} \)
53 \( 1 + (5.39 + 9.34i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-6.72 + 1.59i)T + (52.7 - 26.4i)T^{2} \)
61 \( 1 + (5.37 + 7.22i)T + (-17.4 + 58.4i)T^{2} \)
67 \( 1 + (-0.661 - 11.3i)T + (-66.5 + 7.77i)T^{2} \)
71 \( 1 + (-0.518 - 2.93i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-1.80 + 10.2i)T + (-68.5 - 24.9i)T^{2} \)
79 \( 1 + (-9.16 + 4.60i)T + (47.1 - 63.3i)T^{2} \)
83 \( 1 + (-3.24 + 1.62i)T + (49.5 - 66.5i)T^{2} \)
89 \( 1 + (-1.42 + 8.10i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (2.30 + 7.70i)T + (-81.0 + 53.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.97451261709878170533866314158, −11.92648594114697248770163198876, −11.00164397893555184481316029717, −9.662224409704637151712914945783, −8.748880957263855169509662424950, −7.33634388920758710470151894067, −6.51779014768770218148427810369, −4.92133680838536423851680710945, −3.26663303651104179350910083746, −2.33405441117148183421818350509, 2.63315780385185401385809354712, 4.13645821561245840735979459930, 4.91625471803565595118624520757, 6.65072608839464935183486837356, 7.84755644307340192056579291835, 8.667280371216183278436065813415, 9.948613477604685201377437716990, 10.84794429737321200813015794386, 12.30754034306689090318410998372, 13.31077528081622393229804198323

Graph of the $Z$-function along the critical line