L(s) = 1 | + (0.686 + 0.727i)2-s + (−0.301 + 1.70i)3-s + (−0.0581 + 0.998i)4-s + (1.83 − 0.214i)5-s + (−1.44 + 0.950i)6-s + (−0.0854 − 0.0428i)7-s + (−0.766 + 0.642i)8-s + (−2.81 − 1.03i)9-s + (1.41 + 1.18i)10-s + (0.254 + 0.589i)11-s + (−1.68 − 0.400i)12-s + (−1.34 − 0.319i)13-s + (−0.0274 − 0.0915i)14-s + (−0.188 + 3.19i)15-s + (−0.993 − 0.116i)16-s + (0.845 − 4.79i)17-s + ⋯ |
L(s) = 1 | + (0.485 + 0.514i)2-s + (−0.174 + 0.984i)3-s + (−0.0290 + 0.499i)4-s + (0.821 − 0.0960i)5-s + (−0.591 + 0.388i)6-s + (−0.0322 − 0.0162i)7-s + (−0.270 + 0.227i)8-s + (−0.939 − 0.343i)9-s + (0.448 + 0.376i)10-s + (0.0767 + 0.177i)11-s + (−0.486 − 0.115i)12-s + (−0.373 − 0.0885i)13-s + (−0.00732 − 0.0244i)14-s + (−0.0486 + 0.826i)15-s + (−0.248 − 0.0290i)16-s + (0.205 − 1.16i)17-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(−0.0165−0.999i)Λ(2−s)
Λ(s)=(=(162s/2ΓC(s+1/2)L(s)(−0.0165−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
−0.0165−0.999i
|
Analytic conductor: |
1.29357 |
Root analytic conductor: |
1.13735 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :1/2), −0.0165−0.999i)
|
Particular Values
L(1) |
≈ |
1.01954+1.03660i |
L(21) |
≈ |
1.01954+1.03660i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.686−0.727i)T |
| 3 | 1+(0.301−1.70i)T |
good | 5 | 1+(−1.83+0.214i)T+(4.86−1.15i)T2 |
| 7 | 1+(0.0854+0.0428i)T+(4.18+5.61i)T2 |
| 11 | 1+(−0.254−0.589i)T+(−7.54+8.00i)T2 |
| 13 | 1+(1.34+0.319i)T+(11.6+5.83i)T2 |
| 17 | 1+(−0.845+4.79i)T+(−15.9−5.81i)T2 |
| 19 | 1+(−0.680−3.85i)T+(−17.8+6.49i)T2 |
| 23 | 1+(−6.15+3.08i)T+(13.7−18.4i)T2 |
| 29 | 1+(−1.82+6.08i)T+(−24.2−15.9i)T2 |
| 31 | 1+(−0.00237−0.00156i)T+(12.2+28.4i)T2 |
| 37 | 1+(−4.08+1.48i)T+(28.3−23.7i)T2 |
| 41 | 1+(−5.48+5.81i)T+(−2.38−40.9i)T2 |
| 43 | 1+(6.66−8.94i)T+(−12.3−41.1i)T2 |
| 47 | 1+(7.83−5.15i)T+(18.6−43.1i)T2 |
| 53 | 1+(5.22−9.04i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−1.22+2.83i)T+(−40.4−42.9i)T2 |
| 61 | 1+(−0.152−2.61i)T+(−60.5+7.08i)T2 |
| 67 | 1+(2.24+7.48i)T+(−55.9+36.8i)T2 |
| 71 | 1+(6.01+5.04i)T+(12.3+69.9i)T2 |
| 73 | 1+(5.97−5.01i)T+(12.6−71.8i)T2 |
| 79 | 1+(−7.38−7.82i)T+(−4.59+78.8i)T2 |
| 83 | 1+(1.46+1.54i)T+(−4.82+82.8i)T2 |
| 89 | 1+(3.99−3.35i)T+(15.4−87.6i)T2 |
| 97 | 1+(16.4+1.91i)T+(94.3+22.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.31429054763881762343011959671, −12.16880077531046549933269361191, −11.13996067568577300437728914169, −9.879874264117062905721515552043, −9.293945443727560315434749202955, −7.908143496750262631010723413374, −6.43617979090827547523258158762, −5.42489671824064235418457653745, −4.48110640114763917974796793336, −2.90096710895502153972384092494,
1.61203687055671515347359088388, 3.04043683460499184371714797251, 5.05893971616537352572284284806, 6.10318397737196861875836239841, 7.07471236372562025794388005927, 8.537194176915103782346453718978, 9.716007120414654376050608146309, 10.87799831661095450220578360950, 11.71378941014149464649669560038, 12.86941843897302290293406185070