Properties

Label 2-162-81.22-c1-0-3
Degree $2$
Conductor $162$
Sign $-0.0165 - 0.999i$
Analytic cond. $1.29357$
Root an. cond. $1.13735$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.686 + 0.727i)2-s + (−0.301 + 1.70i)3-s + (−0.0581 + 0.998i)4-s + (1.83 − 0.214i)5-s + (−1.44 + 0.950i)6-s + (−0.0854 − 0.0428i)7-s + (−0.766 + 0.642i)8-s + (−2.81 − 1.03i)9-s + (1.41 + 1.18i)10-s + (0.254 + 0.589i)11-s + (−1.68 − 0.400i)12-s + (−1.34 − 0.319i)13-s + (−0.0274 − 0.0915i)14-s + (−0.188 + 3.19i)15-s + (−0.993 − 0.116i)16-s + (0.845 − 4.79i)17-s + ⋯
L(s)  = 1  + (0.485 + 0.514i)2-s + (−0.174 + 0.984i)3-s + (−0.0290 + 0.499i)4-s + (0.821 − 0.0960i)5-s + (−0.591 + 0.388i)6-s + (−0.0322 − 0.0162i)7-s + (−0.270 + 0.227i)8-s + (−0.939 − 0.343i)9-s + (0.448 + 0.376i)10-s + (0.0767 + 0.177i)11-s + (−0.486 − 0.115i)12-s + (−0.373 − 0.0885i)13-s + (−0.00732 − 0.0244i)14-s + (−0.0486 + 0.826i)15-s + (−0.248 − 0.0290i)16-s + (0.205 − 1.16i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0165 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0165 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-0.0165 - 0.999i$
Analytic conductor: \(1.29357\)
Root analytic conductor: \(1.13735\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :1/2),\ -0.0165 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.01954 + 1.03660i\)
\(L(\frac12)\) \(\approx\) \(1.01954 + 1.03660i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.686 - 0.727i)T \)
3 \( 1 + (0.301 - 1.70i)T \)
good5 \( 1 + (-1.83 + 0.214i)T + (4.86 - 1.15i)T^{2} \)
7 \( 1 + (0.0854 + 0.0428i)T + (4.18 + 5.61i)T^{2} \)
11 \( 1 + (-0.254 - 0.589i)T + (-7.54 + 8.00i)T^{2} \)
13 \( 1 + (1.34 + 0.319i)T + (11.6 + 5.83i)T^{2} \)
17 \( 1 + (-0.845 + 4.79i)T + (-15.9 - 5.81i)T^{2} \)
19 \( 1 + (-0.680 - 3.85i)T + (-17.8 + 6.49i)T^{2} \)
23 \( 1 + (-6.15 + 3.08i)T + (13.7 - 18.4i)T^{2} \)
29 \( 1 + (-1.82 + 6.08i)T + (-24.2 - 15.9i)T^{2} \)
31 \( 1 + (-0.00237 - 0.00156i)T + (12.2 + 28.4i)T^{2} \)
37 \( 1 + (-4.08 + 1.48i)T + (28.3 - 23.7i)T^{2} \)
41 \( 1 + (-5.48 + 5.81i)T + (-2.38 - 40.9i)T^{2} \)
43 \( 1 + (6.66 - 8.94i)T + (-12.3 - 41.1i)T^{2} \)
47 \( 1 + (7.83 - 5.15i)T + (18.6 - 43.1i)T^{2} \)
53 \( 1 + (5.22 - 9.04i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-1.22 + 2.83i)T + (-40.4 - 42.9i)T^{2} \)
61 \( 1 + (-0.152 - 2.61i)T + (-60.5 + 7.08i)T^{2} \)
67 \( 1 + (2.24 + 7.48i)T + (-55.9 + 36.8i)T^{2} \)
71 \( 1 + (6.01 + 5.04i)T + (12.3 + 69.9i)T^{2} \)
73 \( 1 + (5.97 - 5.01i)T + (12.6 - 71.8i)T^{2} \)
79 \( 1 + (-7.38 - 7.82i)T + (-4.59 + 78.8i)T^{2} \)
83 \( 1 + (1.46 + 1.54i)T + (-4.82 + 82.8i)T^{2} \)
89 \( 1 + (3.99 - 3.35i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (16.4 + 1.91i)T + (94.3 + 22.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.31429054763881762343011959671, −12.16880077531046549933269361191, −11.13996067568577300437728914169, −9.879874264117062905721515552043, −9.293945443727560315434749202955, −7.908143496750262631010723413374, −6.43617979090827547523258158762, −5.42489671824064235418457653745, −4.48110640114763917974796793336, −2.90096710895502153972384092494, 1.61203687055671515347359088388, 3.04043683460499184371714797251, 5.05893971616537352572284284806, 6.10318397737196861875836239841, 7.07471236372562025794388005927, 8.537194176915103782346453718978, 9.716007120414654376050608146309, 10.87799831661095450220578360950, 11.71378941014149464649669560038, 12.86941843897302290293406185070

Graph of the $Z$-function along the critical line