Properties

Label 2-162-81.16-c1-0-8
Degree 22
Conductor 162162
Sign 0.9840.177i0.984 - 0.177i
Analytic cond. 1.293571.29357
Root an. cond. 1.137351.13735
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.973 + 0.230i)2-s + (1.70 + 0.290i)3-s + (0.893 + 0.448i)4-s + (0.537 − 0.721i)5-s + (1.59 + 0.676i)6-s + (−3.95 − 2.60i)7-s + (0.766 + 0.642i)8-s + (2.83 + 0.992i)9-s + (0.689 − 0.578i)10-s + (−4.21 + 0.492i)11-s + (1.39 + 1.02i)12-s + (−1.75 + 5.86i)13-s + (−3.24 − 3.44i)14-s + (1.12 − 1.07i)15-s + (0.597 + 0.802i)16-s + (−0.432 − 2.45i)17-s + ⋯
L(s)  = 1  + (0.688 + 0.163i)2-s + (0.985 + 0.167i)3-s + (0.446 + 0.224i)4-s + (0.240 − 0.322i)5-s + (0.650 + 0.276i)6-s + (−1.49 − 0.983i)7-s + (0.270 + 0.227i)8-s + (0.943 + 0.330i)9-s + (0.217 − 0.182i)10-s + (−1.26 + 0.148i)11-s + (0.402 + 0.296i)12-s + (−0.487 + 1.62i)13-s + (−0.868 − 0.920i)14-s + (0.291 − 0.277i)15-s + (0.149 + 0.200i)16-s + (−0.104 − 0.594i)17-s + ⋯

Functional equation

Λ(s)=(162s/2ΓC(s)L(s)=((0.9840.177i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.177i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(162s/2ΓC(s+1/2)L(s)=((0.9840.177i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 - 0.177i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 162162    =    2342 \cdot 3^{4}
Sign: 0.9840.177i0.984 - 0.177i
Analytic conductor: 1.293571.29357
Root analytic conductor: 1.137351.13735
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ162(97,)\chi_{162} (97, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 162, ( :1/2), 0.9840.177i)(2,\ 162,\ (\ :1/2),\ 0.984 - 0.177i)

Particular Values

L(1)L(1) \approx 1.91919+0.171820i1.91919 + 0.171820i
L(12)L(\frac12) \approx 1.91919+0.171820i1.91919 + 0.171820i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.9730.230i)T 1 + (-0.973 - 0.230i)T
3 1+(1.700.290i)T 1 + (-1.70 - 0.290i)T
good5 1+(0.537+0.721i)T+(1.434.78i)T2 1 + (-0.537 + 0.721i)T + (-1.43 - 4.78i)T^{2}
7 1+(3.95+2.60i)T+(2.77+6.42i)T2 1 + (3.95 + 2.60i)T + (2.77 + 6.42i)T^{2}
11 1+(4.210.492i)T+(10.72.53i)T2 1 + (4.21 - 0.492i)T + (10.7 - 2.53i)T^{2}
13 1+(1.755.86i)T+(10.87.14i)T2 1 + (1.75 - 5.86i)T + (-10.8 - 7.14i)T^{2}
17 1+(0.432+2.45i)T+(15.9+5.81i)T2 1 + (0.432 + 2.45i)T + (-15.9 + 5.81i)T^{2}
19 1+(0.2841.61i)T+(17.86.49i)T2 1 + (0.284 - 1.61i)T + (-17.8 - 6.49i)T^{2}
23 1+(6.35+4.17i)T+(9.1021.1i)T2 1 + (-6.35 + 4.17i)T + (9.10 - 21.1i)T^{2}
29 1+(2.09+2.21i)T+(1.6828.9i)T2 1 + (-2.09 + 2.21i)T + (-1.68 - 28.9i)T^{2}
31 1+(0.107+1.84i)T+(30.7+3.59i)T2 1 + (0.107 + 1.84i)T + (-30.7 + 3.59i)T^{2}
37 1+(8.42+3.06i)T+(28.3+23.7i)T2 1 + (8.42 + 3.06i)T + (28.3 + 23.7i)T^{2}
41 1+(5.04+1.19i)T+(36.618.4i)T2 1 + (-5.04 + 1.19i)T + (36.6 - 18.4i)T^{2}
43 1+(1.06+2.46i)T+(29.531.2i)T2 1 + (-1.06 + 2.46i)T + (-29.5 - 31.2i)T^{2}
47 1+(0.486+8.35i)T+(46.65.45i)T2 1 + (-0.486 + 8.35i)T + (-46.6 - 5.45i)T^{2}
53 1+(1.11+1.93i)T+(26.5+45.8i)T2 1 + (1.11 + 1.93i)T + (-26.5 + 45.8i)T^{2}
59 1+(3.71+0.433i)T+(57.4+13.6i)T2 1 + (3.71 + 0.433i)T + (57.4 + 13.6i)T^{2}
61 1+(2.81+1.41i)T+(36.448.9i)T2 1 + (-2.81 + 1.41i)T + (36.4 - 48.9i)T^{2}
67 1+(3.283.48i)T+(3.89+66.8i)T2 1 + (-3.28 - 3.48i)T + (-3.89 + 66.8i)T^{2}
71 1+(3.182.67i)T+(12.369.9i)T2 1 + (3.18 - 2.67i)T + (12.3 - 69.9i)T^{2}
73 1+(1.090.922i)T+(12.6+71.8i)T2 1 + (-1.09 - 0.922i)T + (12.6 + 71.8i)T^{2}
79 1+(5.03+1.19i)T+(70.5+35.4i)T2 1 + (5.03 + 1.19i)T + (70.5 + 35.4i)T^{2}
83 1+(2.63+0.624i)T+(74.1+37.2i)T2 1 + (2.63 + 0.624i)T + (74.1 + 37.2i)T^{2}
89 1+(12.510.5i)T+(15.4+87.6i)T2 1 + (-12.5 - 10.5i)T + (15.4 + 87.6i)T^{2}
97 1+(2.793.75i)T+(27.8+92.9i)T2 1 + (-2.79 - 3.75i)T + (-27.8 + 92.9i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.19134611871119355281362995050, −12.39165404853972178686072889063, −10.71897108539107005664582091102, −9.802519275269370745863797597508, −8.923740243562694930650066007403, −7.35911102685172985824918700081, −6.76930066405254153411832754788, −4.95543185954429229297530967145, −3.80400254564471347820740126459, −2.54352155780279284700628637825, 2.76745412678928797247351510067, 3.10460446898260012657750010895, 5.20912162212214439184039484586, 6.34470074635749085602795074163, 7.54684454753043927427250536867, 8.777445811289761209946368885212, 9.922171153356912434171272250920, 10.63531137735042718010294738982, 12.52773176027738623641992322486, 12.79463850023032950976361596949

Graph of the ZZ-function along the critical line