L(s) = 1 | − 5.65i·2-s − 32.0·4-s + 24.8i·5-s − 6.19·7-s + 181. i·8-s + 140.·10-s − 130. i·11-s − 922.·13-s + 35.0i·14-s + 1.02e3·16-s + 3.38e3i·17-s + 5.40e3·19-s − 794. i·20-s − 740.·22-s − 2.36e3i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.500·4-s + 0.198i·5-s − 0.0180·7-s + 0.353i·8-s + 0.140·10-s − 0.0983i·11-s − 0.419·13-s + 0.0127i·14-s + 0.250·16-s + 0.688i·17-s + 0.787·19-s − 0.0992i·20-s − 0.0695·22-s − 0.194i·23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)iΛ(7−s)
Λ(s)=(=(162s/2ΓC(s+3)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
i
|
Analytic conductor: |
37.2687 |
Root analytic conductor: |
6.10481 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :3), i)
|
Particular Values
L(27) |
≈ |
1.666957347 |
L(21) |
≈ |
1.666957347 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+5.65iT |
| 3 | 1 |
good | 5 | 1−24.8iT−1.56e4T2 |
| 7 | 1+6.19T+1.17e5T2 |
| 11 | 1+130.iT−1.77e6T2 |
| 13 | 1+922.T+4.82e6T2 |
| 17 | 1−3.38e3iT−2.41e7T2 |
| 19 | 1−5.40e3T+4.70e7T2 |
| 23 | 1+2.36e3iT−1.48e8T2 |
| 29 | 1+3.49e4iT−5.94e8T2 |
| 31 | 1−4.66e3T+8.87e8T2 |
| 37 | 1−6.91e3T+2.56e9T2 |
| 41 | 1+5.38e4iT−4.75e9T2 |
| 43 | 1−1.23e5T+6.32e9T2 |
| 47 | 1+9.60e4iT−1.07e10T2 |
| 53 | 1+1.32e5iT−2.21e10T2 |
| 59 | 1+2.90e4iT−4.21e10T2 |
| 61 | 1−3.20e5T+5.15e10T2 |
| 67 | 1+5.29e5T+9.04e10T2 |
| 71 | 1+6.28e5iT−1.28e11T2 |
| 73 | 1+6.87e4T+1.51e11T2 |
| 79 | 1−4.71e5T+2.43e11T2 |
| 83 | 1+3.35e4iT−3.26e11T2 |
| 89 | 1+1.01e6iT−4.96e11T2 |
| 97 | 1−4.18e5T+8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.50318721116501458078081881933, −10.52959532295513050359998844929, −9.662541171565286228910613855795, −8.564081670731083971015383943257, −7.40765341690456207880144272247, −6.01337324632194373119299402676, −4.70088089819609813924858913189, −3.41748306930860739481483671933, −2.15065574576836204074426493832, −0.60825224092598202943167468638,
1.02765213242165244982656942075, 2.97299123776464371834841582617, 4.55643415361811843409152634271, 5.51357133450215452671542029177, 6.83792085026262081554111260614, 7.69911966681077427095742372652, 8.909182436333743728544929509819, 9.721681722110058819379387556930, 10.97009340293895737513523714509, 12.17273286561426335234510804519