L(s) = 1 | + (0.939 + 0.342i)2-s + (0.766 + 0.642i)4-s + (−0.617 + 3.49i)5-s + (−0.244 + 0.205i)7-s + (0.500 + 0.866i)8-s + (−1.77 + 3.07i)10-s + (−0.773 − 4.38i)11-s + (4.39 − 1.60i)13-s + (−0.300 + 0.109i)14-s + (0.173 + 0.984i)16-s + (0.567 − 0.982i)17-s + (−0.928 − 1.60i)19-s + (−2.72 + 2.28i)20-s + (0.773 − 4.38i)22-s + (−0.110 − 0.0926i)23-s + ⋯ |
L(s) = 1 | + (0.664 + 0.241i)2-s + (0.383 + 0.321i)4-s + (−0.275 + 1.56i)5-s + (−0.0925 + 0.0776i)7-s + (0.176 + 0.306i)8-s + (−0.561 + 0.973i)10-s + (−0.233 − 1.32i)11-s + (1.21 − 0.443i)13-s + (−0.0802 + 0.0292i)14-s + (0.0434 + 0.246i)16-s + (0.137 − 0.238i)17-s + (−0.213 − 0.369i)19-s + (−0.608 + 0.510i)20-s + (0.164 − 0.934i)22-s + (−0.0230 − 0.0193i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37040 + 0.730359i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37040 + 0.730359i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.939 - 0.342i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (0.617 - 3.49i)T + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (0.244 - 0.205i)T + (1.21 - 6.89i)T^{2} \) |
| 11 | \( 1 + (0.773 + 4.38i)T + (-10.3 + 3.76i)T^{2} \) |
| 13 | \( 1 + (-4.39 + 1.60i)T + (9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (-0.567 + 0.982i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.928 + 1.60i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.110 + 0.0926i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (4.09 + 1.49i)T + (22.2 + 18.6i)T^{2} \) |
| 31 | \( 1 + (-0.514 - 0.431i)T + (5.38 + 30.5i)T^{2} \) |
| 37 | \( 1 + (3.79 - 6.57i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.04 + 0.744i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (1.23 + 6.98i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (-7.91 + 6.63i)T + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + 0.805T + 53T^{2} \) |
| 59 | \( 1 + (0.517 - 2.93i)T + (-55.4 - 20.1i)T^{2} \) |
| 61 | \( 1 + (2.67 - 2.24i)T + (10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (6.99 - 2.54i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (4.04 - 7.01i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (7.30 + 12.6i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-11.8 - 4.30i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (5.08 + 1.85i)T + (63.5 + 53.3i)T^{2} \) |
| 89 | \( 1 + (-2.52 - 4.37i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.24 - 18.3i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.42648921850884539623893944856, −11.91067949518287788232450594121, −11.01568360746577456062406856720, −10.49005561460321290454973232752, −8.711100055481158769212833980497, −7.58430899762155296303026052096, −6.49893976630276589747969973201, −5.67934625882443467408105351919, −3.73620688801197560256892678594, −2.88472112685116412134947135781,
1.63739275258173341701393103055, 3.90995933279111134493845871754, 4.78861018298391905678126954744, 5.96625878960616884528932471475, 7.47814765900931310930926018958, 8.679586147252383293036129879272, 9.637783624729829551495430835392, 10.91306525939837882299533472502, 12.06163130308780512316081627601, 12.71466121373404654439906401870