Properties

Label 2-162-27.4-c1-0-1
Degree $2$
Conductor $162$
Sign $0.557 - 0.830i$
Analytic cond. $1.29357$
Root an. cond. $1.13735$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.939 + 0.342i)2-s + (0.766 + 0.642i)4-s + (−0.617 + 3.49i)5-s + (−0.244 + 0.205i)7-s + (0.500 + 0.866i)8-s + (−1.77 + 3.07i)10-s + (−0.773 − 4.38i)11-s + (4.39 − 1.60i)13-s + (−0.300 + 0.109i)14-s + (0.173 + 0.984i)16-s + (0.567 − 0.982i)17-s + (−0.928 − 1.60i)19-s + (−2.72 + 2.28i)20-s + (0.773 − 4.38i)22-s + (−0.110 − 0.0926i)23-s + ⋯
L(s)  = 1  + (0.664 + 0.241i)2-s + (0.383 + 0.321i)4-s + (−0.275 + 1.56i)5-s + (−0.0925 + 0.0776i)7-s + (0.176 + 0.306i)8-s + (−0.561 + 0.973i)10-s + (−0.233 − 1.32i)11-s + (1.21 − 0.443i)13-s + (−0.0802 + 0.0292i)14-s + (0.0434 + 0.246i)16-s + (0.137 − 0.238i)17-s + (−0.213 − 0.369i)19-s + (−0.608 + 0.510i)20-s + (0.164 − 0.934i)22-s + (−0.0230 − 0.0193i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $0.557 - 0.830i$
Analytic conductor: \(1.29357\)
Root analytic conductor: \(1.13735\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (145, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :1/2),\ 0.557 - 0.830i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.37040 + 0.730359i\)
\(L(\frac12)\) \(\approx\) \(1.37040 + 0.730359i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.939 - 0.342i)T \)
3 \( 1 \)
good5 \( 1 + (0.617 - 3.49i)T + (-4.69 - 1.71i)T^{2} \)
7 \( 1 + (0.244 - 0.205i)T + (1.21 - 6.89i)T^{2} \)
11 \( 1 + (0.773 + 4.38i)T + (-10.3 + 3.76i)T^{2} \)
13 \( 1 + (-4.39 + 1.60i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (-0.567 + 0.982i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.928 + 1.60i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.110 + 0.0926i)T + (3.99 + 22.6i)T^{2} \)
29 \( 1 + (4.09 + 1.49i)T + (22.2 + 18.6i)T^{2} \)
31 \( 1 + (-0.514 - 0.431i)T + (5.38 + 30.5i)T^{2} \)
37 \( 1 + (3.79 - 6.57i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-2.04 + 0.744i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (1.23 + 6.98i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-7.91 + 6.63i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 + 0.805T + 53T^{2} \)
59 \( 1 + (0.517 - 2.93i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (2.67 - 2.24i)T + (10.5 - 60.0i)T^{2} \)
67 \( 1 + (6.99 - 2.54i)T + (51.3 - 43.0i)T^{2} \)
71 \( 1 + (4.04 - 7.01i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (7.30 + 12.6i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-11.8 - 4.30i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (5.08 + 1.85i)T + (63.5 + 53.3i)T^{2} \)
89 \( 1 + (-2.52 - 4.37i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-3.24 - 18.3i)T + (-91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42648921850884539623893944856, −11.91067949518287788232450594121, −11.01568360746577456062406856720, −10.49005561460321290454973232752, −8.711100055481158769212833980497, −7.58430899762155296303026052096, −6.49893976630276589747969973201, −5.67934625882443467408105351919, −3.73620688801197560256892678594, −2.88472112685116412134947135781, 1.63739275258173341701393103055, 3.90995933279111134493845871754, 4.78861018298391905678126954744, 5.96625878960616884528932471475, 7.47814765900931310930926018958, 8.679586147252383293036129879272, 9.637783624729829551495430835392, 10.91306525939837882299533472502, 12.06163130308780512316081627601, 12.71466121373404654439906401870

Graph of the $Z$-function along the critical line