L(s) = 1 | + (0.939 + 0.342i)2-s + (0.766 + 0.642i)4-s + (−0.617 + 3.49i)5-s + (−0.244 + 0.205i)7-s + (0.500 + 0.866i)8-s + (−1.77 + 3.07i)10-s + (−0.773 − 4.38i)11-s + (4.39 − 1.60i)13-s + (−0.300 + 0.109i)14-s + (0.173 + 0.984i)16-s + (0.567 − 0.982i)17-s + (−0.928 − 1.60i)19-s + (−2.72 + 2.28i)20-s + (0.773 − 4.38i)22-s + (−0.110 − 0.0926i)23-s + ⋯ |
L(s) = 1 | + (0.664 + 0.241i)2-s + (0.383 + 0.321i)4-s + (−0.275 + 1.56i)5-s + (−0.0925 + 0.0776i)7-s + (0.176 + 0.306i)8-s + (−0.561 + 0.973i)10-s + (−0.233 − 1.32i)11-s + (1.21 − 0.443i)13-s + (−0.0802 + 0.0292i)14-s + (0.0434 + 0.246i)16-s + (0.137 − 0.238i)17-s + (−0.213 − 0.369i)19-s + (−0.608 + 0.510i)20-s + (0.164 − 0.934i)22-s + (−0.0230 − 0.0193i)23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(0.557−0.830i)Λ(2−s)
Λ(s)=(=(162s/2ΓC(s+1/2)L(s)(0.557−0.830i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
0.557−0.830i
|
Analytic conductor: |
1.29357 |
Root analytic conductor: |
1.13735 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :1/2), 0.557−0.830i)
|
Particular Values
L(1) |
≈ |
1.37040+0.730359i |
L(21) |
≈ |
1.37040+0.730359i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.939−0.342i)T |
| 3 | 1 |
good | 5 | 1+(0.617−3.49i)T+(−4.69−1.71i)T2 |
| 7 | 1+(0.244−0.205i)T+(1.21−6.89i)T2 |
| 11 | 1+(0.773+4.38i)T+(−10.3+3.76i)T2 |
| 13 | 1+(−4.39+1.60i)T+(9.95−8.35i)T2 |
| 17 | 1+(−0.567+0.982i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.928+1.60i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.110+0.0926i)T+(3.99+22.6i)T2 |
| 29 | 1+(4.09+1.49i)T+(22.2+18.6i)T2 |
| 31 | 1+(−0.514−0.431i)T+(5.38+30.5i)T2 |
| 37 | 1+(3.79−6.57i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−2.04+0.744i)T+(31.4−26.3i)T2 |
| 43 | 1+(1.23+6.98i)T+(−40.4+14.7i)T2 |
| 47 | 1+(−7.91+6.63i)T+(8.16−46.2i)T2 |
| 53 | 1+0.805T+53T2 |
| 59 | 1+(0.517−2.93i)T+(−55.4−20.1i)T2 |
| 61 | 1+(2.67−2.24i)T+(10.5−60.0i)T2 |
| 67 | 1+(6.99−2.54i)T+(51.3−43.0i)T2 |
| 71 | 1+(4.04−7.01i)T+(−35.5−61.4i)T2 |
| 73 | 1+(7.30+12.6i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−11.8−4.30i)T+(60.5+50.7i)T2 |
| 83 | 1+(5.08+1.85i)T+(63.5+53.3i)T2 |
| 89 | 1+(−2.52−4.37i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−3.24−18.3i)T+(−91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.42648921850884539623893944856, −11.91067949518287788232450594121, −11.01568360746577456062406856720, −10.49005561460321290454973232752, −8.711100055481158769212833980497, −7.58430899762155296303026052096, −6.49893976630276589747969973201, −5.67934625882443467408105351919, −3.73620688801197560256892678594, −2.88472112685116412134947135781,
1.63739275258173341701393103055, 3.90995933279111134493845871754, 4.78861018298391905678126954744, 5.96625878960616884528932471475, 7.47814765900931310930926018958, 8.679586147252383293036129879272, 9.637783624729829551495430835392, 10.91306525939837882299533472502, 12.06163130308780512316081627601, 12.71466121373404654439906401870