Properties

Label 2-162-1.1-c9-0-7
Degree $2$
Conductor $162$
Sign $1$
Analytic cond. $83.4358$
Root an. cond. $9.13432$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·2-s + 256·4-s − 2.52e3·5-s + 7.03e3·7-s + 4.09e3·8-s − 4.04e4·10-s − 3.94e4·11-s + 4.77e4·13-s + 1.12e5·14-s + 6.55e4·16-s − 4.20e5·17-s + 4.86e5·19-s − 6.46e5·20-s − 6.30e5·22-s − 1.12e6·23-s + 4.42e6·25-s + 7.64e5·26-s + 1.80e6·28-s − 3.19e6·29-s − 3.55e6·31-s + 1.04e6·32-s − 6.72e6·34-s − 1.77e7·35-s − 2.21e6·37-s + 7.78e6·38-s − 1.03e7·40-s + 2.87e7·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.80·5-s + 1.10·7-s + 0.353·8-s − 1.27·10-s − 0.811·11-s + 0.464·13-s + 0.783·14-s + 0.250·16-s − 1.22·17-s + 0.856·19-s − 0.903·20-s − 0.573·22-s − 0.840·23-s + 2.26·25-s + 0.328·26-s + 0.553·28-s − 0.838·29-s − 0.691·31-s + 0.176·32-s − 0.862·34-s − 2.00·35-s − 0.194·37-s + 0.605·38-s − 0.639·40-s + 1.58·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(83.4358\)
Root analytic conductor: \(9.13432\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.355782363\)
\(L(\frac12)\) \(\approx\) \(2.355782363\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 16T \)
3 \( 1 \)
good5 \( 1 + 2.52e3T + 1.95e6T^{2} \)
7 \( 1 - 7.03e3T + 4.03e7T^{2} \)
11 \( 1 + 3.94e4T + 2.35e9T^{2} \)
13 \( 1 - 4.77e4T + 1.06e10T^{2} \)
17 \( 1 + 4.20e5T + 1.18e11T^{2} \)
19 \( 1 - 4.86e5T + 3.22e11T^{2} \)
23 \( 1 + 1.12e6T + 1.80e12T^{2} \)
29 \( 1 + 3.19e6T + 1.45e13T^{2} \)
31 \( 1 + 3.55e6T + 2.64e13T^{2} \)
37 \( 1 + 2.21e6T + 1.29e14T^{2} \)
41 \( 1 - 2.87e7T + 3.27e14T^{2} \)
43 \( 1 - 3.02e7T + 5.02e14T^{2} \)
47 \( 1 - 5.38e7T + 1.11e15T^{2} \)
53 \( 1 - 8.48e7T + 3.29e15T^{2} \)
59 \( 1 - 2.27e7T + 8.66e15T^{2} \)
61 \( 1 - 1.24e8T + 1.16e16T^{2} \)
67 \( 1 + 3.35e7T + 2.72e16T^{2} \)
71 \( 1 - 2.55e8T + 4.58e16T^{2} \)
73 \( 1 + 3.71e8T + 5.88e16T^{2} \)
79 \( 1 - 7.34e7T + 1.19e17T^{2} \)
83 \( 1 - 3.66e8T + 1.86e17T^{2} \)
89 \( 1 - 2.70e8T + 3.50e17T^{2} \)
97 \( 1 - 2.04e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26110119523196157305562737140, −10.77407734001840915833584637406, −8.807081075868433196450137881582, −7.80690307469841129067489338854, −7.27368894286356212120099989309, −5.57803554662277812252137777686, −4.45258113023757639277035334396, −3.77331587641911901115529315686, −2.33124411361533269658110687917, −0.68550034877451641189041913662, 0.68550034877451641189041913662, 2.33124411361533269658110687917, 3.77331587641911901115529315686, 4.45258113023757639277035334396, 5.57803554662277812252137777686, 7.27368894286356212120099989309, 7.80690307469841129067489338854, 8.807081075868433196450137881582, 10.77407734001840915833584637406, 11.26110119523196157305562737140

Graph of the $Z$-function along the critical line