Properties

Label 2-162-1.1-c9-0-24
Degree $2$
Conductor $162$
Sign $-1$
Analytic cond. $83.4358$
Root an. cond. $9.13432$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 256·4-s + 1.11e3·5-s − 4.30e3·7-s − 4.09e3·8-s − 1.79e4·10-s − 1.44e4·11-s + 1.20e5·13-s + 6.88e4·14-s + 6.55e4·16-s − 9.99e3·17-s + 9.94e4·19-s + 2.86e5·20-s + 2.31e5·22-s − 2.12e6·23-s − 6.99e5·25-s − 1.93e6·26-s − 1.10e6·28-s + 4.24e6·29-s − 9.72e6·31-s − 1.04e6·32-s + 1.59e5·34-s − 4.81e6·35-s + 1.35e7·37-s − 1.59e6·38-s − 4.58e6·40-s + 2.10e7·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.801·5-s − 0.677·7-s − 0.353·8-s − 0.566·10-s − 0.297·11-s + 1.17·13-s + 0.478·14-s + 0.250·16-s − 0.0290·17-s + 0.175·19-s + 0.400·20-s + 0.210·22-s − 1.58·23-s − 0.358·25-s − 0.829·26-s − 0.338·28-s + 1.11·29-s − 1.89·31-s − 0.176·32-s + 0.0205·34-s − 0.542·35-s + 1.19·37-s − 0.123·38-s − 0.283·40-s + 1.16·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(83.4358\)
Root analytic conductor: \(9.13432\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 16T \)
3 \( 1 \)
good5 \( 1 - 1.11e3T + 1.95e6T^{2} \)
7 \( 1 + 4.30e3T + 4.03e7T^{2} \)
11 \( 1 + 1.44e4T + 2.35e9T^{2} \)
13 \( 1 - 1.20e5T + 1.06e10T^{2} \)
17 \( 1 + 9.99e3T + 1.18e11T^{2} \)
19 \( 1 - 9.94e4T + 3.22e11T^{2} \)
23 \( 1 + 2.12e6T + 1.80e12T^{2} \)
29 \( 1 - 4.24e6T + 1.45e13T^{2} \)
31 \( 1 + 9.72e6T + 2.64e13T^{2} \)
37 \( 1 - 1.35e7T + 1.29e14T^{2} \)
41 \( 1 - 2.10e7T + 3.27e14T^{2} \)
43 \( 1 + 2.93e7T + 5.02e14T^{2} \)
47 \( 1 - 6.60e7T + 1.11e15T^{2} \)
53 \( 1 + 1.79e7T + 3.29e15T^{2} \)
59 \( 1 + 1.61e7T + 8.66e15T^{2} \)
61 \( 1 - 1.55e7T + 1.16e16T^{2} \)
67 \( 1 - 1.91e8T + 2.72e16T^{2} \)
71 \( 1 + 5.22e7T + 4.58e16T^{2} \)
73 \( 1 + 2.93e8T + 5.88e16T^{2} \)
79 \( 1 + 5.31e8T + 1.19e17T^{2} \)
83 \( 1 + 4.88e8T + 1.86e17T^{2} \)
89 \( 1 - 6.14e8T + 3.50e17T^{2} \)
97 \( 1 + 2.26e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.41301436869588671757114367167, −9.682560986310483570149223476985, −8.766141888696555595674061667227, −7.66184046684297064038134286939, −6.35295159490772670615737474479, −5.70974106940730794741048160202, −3.85657525780767177891181305527, −2.51014873033431379299000991386, −1.35977700892932588490247398790, 0, 1.35977700892932588490247398790, 2.51014873033431379299000991386, 3.85657525780767177891181305527, 5.70974106940730794741048160202, 6.35295159490772670615737474479, 7.66184046684297064038134286939, 8.766141888696555595674061667227, 9.682560986310483570149223476985, 10.41301436869588671757114367167

Graph of the $Z$-function along the critical line