Properties

Label 2-162-1.1-c9-0-23
Degree $2$
Conductor $162$
Sign $1$
Analytic cond. $83.4358$
Root an. cond. $9.13432$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·2-s + 256·4-s + 980.·5-s + 9.87e3·7-s + 4.09e3·8-s + 1.56e4·10-s + 8.12e4·11-s + 1.89e5·13-s + 1.57e5·14-s + 6.55e4·16-s − 2.32e5·17-s − 1.35e5·19-s + 2.51e5·20-s + 1.29e6·22-s − 1.28e6·23-s − 9.91e5·25-s + 3.02e6·26-s + 2.52e6·28-s + 1.19e6·29-s + 3.04e6·31-s + 1.04e6·32-s − 3.72e6·34-s + 9.68e6·35-s − 7.74e6·37-s − 2.17e6·38-s + 4.01e6·40-s − 9.13e6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.701·5-s + 1.55·7-s + 0.353·8-s + 0.496·10-s + 1.67·11-s + 1.83·13-s + 1.09·14-s + 0.250·16-s − 0.675·17-s − 0.239·19-s + 0.350·20-s + 1.18·22-s − 0.958·23-s − 0.507·25-s + 1.30·26-s + 0.777·28-s + 0.313·29-s + 0.593·31-s + 0.176·32-s − 0.477·34-s + 1.09·35-s − 0.679·37-s − 0.169·38-s + 0.248·40-s − 0.505·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(83.4358\)
Root analytic conductor: \(9.13432\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(5.905366629\)
\(L(\frac12)\) \(\approx\) \(5.905366629\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 16T \)
3 \( 1 \)
good5 \( 1 - 980.T + 1.95e6T^{2} \)
7 \( 1 - 9.87e3T + 4.03e7T^{2} \)
11 \( 1 - 8.12e4T + 2.35e9T^{2} \)
13 \( 1 - 1.89e5T + 1.06e10T^{2} \)
17 \( 1 + 2.32e5T + 1.18e11T^{2} \)
19 \( 1 + 1.35e5T + 3.22e11T^{2} \)
23 \( 1 + 1.28e6T + 1.80e12T^{2} \)
29 \( 1 - 1.19e6T + 1.45e13T^{2} \)
31 \( 1 - 3.04e6T + 2.64e13T^{2} \)
37 \( 1 + 7.74e6T + 1.29e14T^{2} \)
41 \( 1 + 9.13e6T + 3.27e14T^{2} \)
43 \( 1 + 1.53e7T + 5.02e14T^{2} \)
47 \( 1 + 2.78e7T + 1.11e15T^{2} \)
53 \( 1 - 4.02e7T + 3.29e15T^{2} \)
59 \( 1 - 2.31e7T + 8.66e15T^{2} \)
61 \( 1 + 1.57e8T + 1.16e16T^{2} \)
67 \( 1 + 5.69e7T + 2.72e16T^{2} \)
71 \( 1 + 1.30e8T + 4.58e16T^{2} \)
73 \( 1 + 1.66e8T + 5.88e16T^{2} \)
79 \( 1 - 3.26e8T + 1.19e17T^{2} \)
83 \( 1 - 4.81e8T + 1.86e17T^{2} \)
89 \( 1 + 7.64e8T + 3.50e17T^{2} \)
97 \( 1 - 1.17e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41064132296071117389270318937, −10.43136419120648518856675866465, −8.976051669608451309983894516086, −8.165179578597050823583719565391, −6.60633006189882885596637256773, −5.89119273022251577938174709862, −4.58575718761834329369687754488, −3.70807643081542247018393820594, −1.87191203005201425688819966662, −1.32794452840952202723729443948, 1.32794452840952202723729443948, 1.87191203005201425688819966662, 3.70807643081542247018393820594, 4.58575718761834329369687754488, 5.89119273022251577938174709862, 6.60633006189882885596637256773, 8.165179578597050823583719565391, 8.976051669608451309983894516086, 10.43136419120648518856675866465, 11.41064132296071117389270318937

Graph of the $Z$-function along the critical line