L(s) = 1 | − 16·2-s + 256·4-s + 2.52e3·5-s + 7.03e3·7-s − 4.09e3·8-s − 4.04e4·10-s + 3.94e4·11-s + 4.77e4·13-s − 1.12e5·14-s + 6.55e4·16-s + 4.20e5·17-s + 4.86e5·19-s + 6.46e5·20-s − 6.30e5·22-s + 1.12e6·23-s + 4.42e6·25-s − 7.64e5·26-s + 1.80e6·28-s + 3.19e6·29-s − 3.55e6·31-s − 1.04e6·32-s − 6.72e6·34-s + 1.77e7·35-s − 2.21e6·37-s − 7.78e6·38-s − 1.03e7·40-s − 2.87e7·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 1.80·5-s + 1.10·7-s − 0.353·8-s − 1.27·10-s + 0.811·11-s + 0.464·13-s − 0.783·14-s + 0.250·16-s + 1.22·17-s + 0.856·19-s + 0.903·20-s − 0.573·22-s + 0.840·23-s + 2.26·25-s − 0.328·26-s + 0.553·28-s + 0.838·29-s − 0.691·31-s − 0.176·32-s − 0.862·34-s + 2.00·35-s − 0.194·37-s − 0.605·38-s − 0.639·40-s − 1.58·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(3.275516808\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.275516808\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 16T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 2.52e3T + 1.95e6T^{2} \) |
| 7 | \( 1 - 7.03e3T + 4.03e7T^{2} \) |
| 11 | \( 1 - 3.94e4T + 2.35e9T^{2} \) |
| 13 | \( 1 - 4.77e4T + 1.06e10T^{2} \) |
| 17 | \( 1 - 4.20e5T + 1.18e11T^{2} \) |
| 19 | \( 1 - 4.86e5T + 3.22e11T^{2} \) |
| 23 | \( 1 - 1.12e6T + 1.80e12T^{2} \) |
| 29 | \( 1 - 3.19e6T + 1.45e13T^{2} \) |
| 31 | \( 1 + 3.55e6T + 2.64e13T^{2} \) |
| 37 | \( 1 + 2.21e6T + 1.29e14T^{2} \) |
| 41 | \( 1 + 2.87e7T + 3.27e14T^{2} \) |
| 43 | \( 1 - 3.02e7T + 5.02e14T^{2} \) |
| 47 | \( 1 + 5.38e7T + 1.11e15T^{2} \) |
| 53 | \( 1 + 8.48e7T + 3.29e15T^{2} \) |
| 59 | \( 1 + 2.27e7T + 8.66e15T^{2} \) |
| 61 | \( 1 - 1.24e8T + 1.16e16T^{2} \) |
| 67 | \( 1 + 3.35e7T + 2.72e16T^{2} \) |
| 71 | \( 1 + 2.55e8T + 4.58e16T^{2} \) |
| 73 | \( 1 + 3.71e8T + 5.88e16T^{2} \) |
| 79 | \( 1 - 7.34e7T + 1.19e17T^{2} \) |
| 83 | \( 1 + 3.66e8T + 1.86e17T^{2} \) |
| 89 | \( 1 + 2.70e8T + 3.50e17T^{2} \) |
| 97 | \( 1 - 2.04e8T + 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94689899219250832461625443194, −9.992147094909347780943990019495, −9.257129852668707451674802356022, −8.302372041534387613177461050978, −6.99612198299124038951317693844, −5.90774455511183671735572540900, −5.02096955217191316376143151765, −3.05189274870026135211992164977, −1.59235019742337643270916187406, −1.23559981531248967911537504266,
1.23559981531248967911537504266, 1.59235019742337643270916187406, 3.05189274870026135211992164977, 5.02096955217191316376143151765, 5.90774455511183671735572540900, 6.99612198299124038951317693844, 8.302372041534387613177461050978, 9.257129852668707451674802356022, 9.992147094909347780943990019495, 10.94689899219250832461625443194