Properties

Label 2-162-1.1-c9-0-19
Degree $2$
Conductor $162$
Sign $-1$
Analytic cond. $83.4358$
Root an. cond. $9.13432$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 256·4-s − 1.16e3·5-s + 6.24e3·7-s − 4.09e3·8-s + 1.87e4·10-s − 1.65e4·11-s − 1.36e4·13-s − 9.99e4·14-s + 6.55e4·16-s − 1.56e5·17-s + 5.43e5·19-s − 2.99e5·20-s + 2.64e5·22-s − 1.46e6·23-s − 5.85e5·25-s + 2.17e5·26-s + 1.59e6·28-s + 4.58e6·29-s + 6.53e6·31-s − 1.04e6·32-s + 2.51e6·34-s − 7.30e6·35-s − 1.36e7·37-s − 8.69e6·38-s + 4.78e6·40-s + 1.54e7·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.836·5-s + 0.983·7-s − 0.353·8-s + 0.591·10-s − 0.340·11-s − 0.132·13-s − 0.695·14-s + 0.250·16-s − 0.455·17-s + 0.957·19-s − 0.418·20-s + 0.240·22-s − 1.09·23-s − 0.300·25-s + 0.0935·26-s + 0.491·28-s + 1.20·29-s + 1.27·31-s − 0.176·32-s + 0.322·34-s − 0.822·35-s − 1.19·37-s − 0.676·38-s + 0.295·40-s + 0.853·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(83.4358\)
Root analytic conductor: \(9.13432\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 16T \)
3 \( 1 \)
good5 \( 1 + 1.16e3T + 1.95e6T^{2} \)
7 \( 1 - 6.24e3T + 4.03e7T^{2} \)
11 \( 1 + 1.65e4T + 2.35e9T^{2} \)
13 \( 1 + 1.36e4T + 1.06e10T^{2} \)
17 \( 1 + 1.56e5T + 1.18e11T^{2} \)
19 \( 1 - 5.43e5T + 3.22e11T^{2} \)
23 \( 1 + 1.46e6T + 1.80e12T^{2} \)
29 \( 1 - 4.58e6T + 1.45e13T^{2} \)
31 \( 1 - 6.53e6T + 2.64e13T^{2} \)
37 \( 1 + 1.36e7T + 1.29e14T^{2} \)
41 \( 1 - 1.54e7T + 3.27e14T^{2} \)
43 \( 1 - 3.84e6T + 5.02e14T^{2} \)
47 \( 1 + 6.05e6T + 1.11e15T^{2} \)
53 \( 1 + 4.91e7T + 3.29e15T^{2} \)
59 \( 1 - 1.08e8T + 8.66e15T^{2} \)
61 \( 1 - 1.38e8T + 1.16e16T^{2} \)
67 \( 1 - 1.06e8T + 2.72e16T^{2} \)
71 \( 1 + 1.07e8T + 4.58e16T^{2} \)
73 \( 1 + 8.53e7T + 5.88e16T^{2} \)
79 \( 1 - 5.52e8T + 1.19e17T^{2} \)
83 \( 1 + 1.64e8T + 1.86e17T^{2} \)
89 \( 1 + 3.89e8T + 3.50e17T^{2} \)
97 \( 1 - 1.39e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68217765472357151559628221228, −9.661529076241530694531667440767, −8.289198378616620493651670626622, −7.913750214644632366249903933669, −6.73257471921995611735010480673, −5.24170743390486726607298034989, −4.04550229547493976520762154298, −2.56247946271949633876211853578, −1.23011790730964835828015019922, 0, 1.23011790730964835828015019922, 2.56247946271949633876211853578, 4.04550229547493976520762154298, 5.24170743390486726607298034989, 6.73257471921995611735010480673, 7.913750214644632366249903933669, 8.289198378616620493651670626622, 9.661529076241530694531667440767, 10.68217765472357151559628221228

Graph of the $Z$-function along the critical line