Properties

Label 2-162-1.1-c9-0-18
Degree $2$
Conductor $162$
Sign $1$
Analytic cond. $83.4358$
Root an. cond. $9.13432$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·2-s + 256·4-s + 2.28e3·5-s − 1.36e3·7-s + 4.09e3·8-s + 3.65e4·10-s + 2.77e4·11-s + 3.80e4·13-s − 2.18e4·14-s + 6.55e4·16-s + 1.36e5·17-s + 6.04e5·19-s + 5.84e5·20-s + 4.44e5·22-s − 2.42e6·23-s + 3.26e6·25-s + 6.09e5·26-s − 3.50e5·28-s + 4.55e6·29-s − 1.10e6·31-s + 1.04e6·32-s + 2.17e6·34-s − 3.12e6·35-s + 1.63e7·37-s + 9.66e6·38-s + 9.35e6·40-s + 2.04e7·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.63·5-s − 0.215·7-s + 0.353·8-s + 1.15·10-s + 0.571·11-s + 0.369·13-s − 0.152·14-s + 0.250·16-s + 0.395·17-s + 1.06·19-s + 0.817·20-s + 0.404·22-s − 1.80·23-s + 1.67·25-s + 0.261·26-s − 0.107·28-s + 1.19·29-s − 0.214·31-s + 0.176·32-s + 0.279·34-s − 0.352·35-s + 1.43·37-s + 0.752·38-s + 0.577·40-s + 1.13·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(83.4358\)
Root analytic conductor: \(9.13432\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(5.370096942\)
\(L(\frac12)\) \(\approx\) \(5.370096942\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 16T \)
3 \( 1 \)
good5 \( 1 - 2.28e3T + 1.95e6T^{2} \)
7 \( 1 + 1.36e3T + 4.03e7T^{2} \)
11 \( 1 - 2.77e4T + 2.35e9T^{2} \)
13 \( 1 - 3.80e4T + 1.06e10T^{2} \)
17 \( 1 - 1.36e5T + 1.18e11T^{2} \)
19 \( 1 - 6.04e5T + 3.22e11T^{2} \)
23 \( 1 + 2.42e6T + 1.80e12T^{2} \)
29 \( 1 - 4.55e6T + 1.45e13T^{2} \)
31 \( 1 + 1.10e6T + 2.64e13T^{2} \)
37 \( 1 - 1.63e7T + 1.29e14T^{2} \)
41 \( 1 - 2.04e7T + 3.27e14T^{2} \)
43 \( 1 + 1.09e7T + 5.02e14T^{2} \)
47 \( 1 + 5.23e7T + 1.11e15T^{2} \)
53 \( 1 + 9.17e7T + 3.29e15T^{2} \)
59 \( 1 - 5.84e7T + 8.66e15T^{2} \)
61 \( 1 + 4.75e7T + 1.16e16T^{2} \)
67 \( 1 - 1.68e8T + 2.72e16T^{2} \)
71 \( 1 + 1.13e8T + 4.58e16T^{2} \)
73 \( 1 - 3.79e8T + 5.88e16T^{2} \)
79 \( 1 - 1.74e7T + 1.19e17T^{2} \)
83 \( 1 - 5.81e8T + 1.86e17T^{2} \)
89 \( 1 - 5.85e8T + 3.50e17T^{2} \)
97 \( 1 + 8.50e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26495002600193450787902160455, −9.990579629132767059930678007892, −9.507829084513516679066136382612, −7.992998276318946691308478730639, −6.45380177653381330310568933766, −5.96890414151854248483240449063, −4.82922382840879679151919278604, −3.38139986740544299486546225692, −2.17174332016560259896739315092, −1.14692596472200272248746053565, 1.14692596472200272248746053565, 2.17174332016560259896739315092, 3.38139986740544299486546225692, 4.82922382840879679151919278604, 5.96890414151854248483240449063, 6.45380177653381330310568933766, 7.992998276318946691308478730639, 9.507829084513516679066136382612, 9.990579629132767059930678007892, 11.26495002600193450787902160455

Graph of the $Z$-function along the critical line