L(s) = 1 | + 8·2-s + 64·4-s − 165·5-s − 508·7-s + 512·8-s − 1.32e3·10-s + 3.02e3·11-s + 5.03e3·13-s − 4.06e3·14-s + 4.09e3·16-s − 3.18e3·17-s + 1.50e3·19-s − 1.05e4·20-s + 2.41e4·22-s − 7.56e4·23-s − 5.09e4·25-s + 4.03e4·26-s − 3.25e4·28-s − 8.26e4·29-s − 1.74e5·31-s + 3.27e4·32-s − 2.55e4·34-s + 8.38e4·35-s − 3.23e5·37-s + 1.20e4·38-s − 8.44e4·40-s − 3.08e5·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.590·5-s − 0.559·7-s + 0.353·8-s − 0.417·10-s + 0.685·11-s + 0.636·13-s − 0.395·14-s + 1/4·16-s − 0.157·17-s + 0.0504·19-s − 0.295·20-s + 0.484·22-s − 1.29·23-s − 0.651·25-s + 0.449·26-s − 0.279·28-s − 0.629·29-s − 1.05·31-s + 0.176·32-s − 0.111·34-s + 0.330·35-s − 1.05·37-s + 0.0356·38-s − 0.208·40-s − 0.698·41-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(162s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p3T |
| 3 | 1 |
good | 5 | 1+33pT+p7T2 |
| 7 | 1+508T+p7T2 |
| 11 | 1−3024T+p7T2 |
| 13 | 1−5039T+p7T2 |
| 17 | 1+3189T+p7T2 |
| 19 | 1−1508T+p7T2 |
| 23 | 1+75600T+p7T2 |
| 29 | 1+82665T+p7T2 |
| 31 | 1+174892T+p7T2 |
| 37 | 1+323569T+p7T2 |
| 41 | 1+308118T+p7T2 |
| 43 | 1−336680T+p7T2 |
| 47 | 1+383196T+p7T2 |
| 53 | 1−760206T+p7T2 |
| 59 | 1+2225664T+p7T2 |
| 61 | 1−2244815T+p7T2 |
| 67 | 1−1473188T+p7T2 |
| 71 | 1+5006892T+p7T2 |
| 73 | 1+5898301T+p7T2 |
| 79 | 1−7028768T+p7T2 |
| 83 | 1+2651196T+p7T2 |
| 89 | 1+6770901T+p7T2 |
| 97 | 1−16176386T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.34043325297840783623196539298, −10.18069604097718888816905520926, −8.971694411553695824216425530445, −7.74597652412341814988104030203, −6.64173360325397727413371338916, −5.66037360169780218180545218815, −4.14021563316544553018951225009, −3.41345366030187447043885596084, −1.75635296670456043562076078548, 0,
1.75635296670456043562076078548, 3.41345366030187447043885596084, 4.14021563316544553018951225009, 5.66037360169780218180545218815, 6.64173360325397727413371338916, 7.74597652412341814988104030203, 8.971694411553695824216425530445, 10.18069604097718888816905520926, 11.34043325297840783623196539298