L(s) = 1 | − 4·2-s + 16·4-s − 21·5-s + 74·7-s − 64·8-s + 84·10-s − 270·11-s − 115·13-s − 296·14-s + 256·16-s + 861·17-s + 1.85e3·19-s − 336·20-s + 1.08e3·22-s − 3.61e3·23-s − 2.68e3·25-s + 460·26-s + 1.18e3·28-s − 1.12e3·29-s + 5.22e3·31-s − 1.02e3·32-s − 3.44e3·34-s − 1.55e3·35-s + 9.91e3·37-s − 7.40e3·38-s + 1.34e3·40-s − 1.07e4·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.375·5-s + 0.570·7-s − 0.353·8-s + 0.265·10-s − 0.672·11-s − 0.188·13-s − 0.403·14-s + 1/4·16-s + 0.722·17-s + 1.17·19-s − 0.187·20-s + 0.475·22-s − 1.42·23-s − 0.858·25-s + 0.133·26-s + 0.285·28-s − 0.248·29-s + 0.977·31-s − 0.176·32-s − 0.510·34-s − 0.214·35-s + 1.19·37-s − 0.831·38-s + 0.132·40-s − 0.999·41-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(162s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p2T |
| 3 | 1 |
good | 5 | 1+21T+p5T2 |
| 7 | 1−74T+p5T2 |
| 11 | 1+270T+p5T2 |
| 13 | 1+115T+p5T2 |
| 17 | 1−861T+p5T2 |
| 19 | 1−1850T+p5T2 |
| 23 | 1+3618T+p5T2 |
| 29 | 1+1125T+p5T2 |
| 31 | 1−5228T+p5T2 |
| 37 | 1−9917T+p5T2 |
| 41 | 1+10758T+p5T2 |
| 43 | 1+19714T+p5T2 |
| 47 | 1+9984T+p5T2 |
| 53 | 1+36726T+p5T2 |
| 59 | 1+26460T+p5T2 |
| 61 | 1+53779T+p5T2 |
| 67 | 1+12934T+p5T2 |
| 71 | 1−4254T+p5T2 |
| 73 | 1+17521T+p5T2 |
| 79 | 1+36946T+p5T2 |
| 83 | 1−76416T+p5T2 |
| 89 | 1−45357T+p5T2 |
| 97 | 1−127574T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.51909936680503427975812663331, −10.29316234340885445789885747474, −9.540663835836650686316321655441, −7.997615749117124459344682799354, −7.77050153653225993151343386985, −6.16990717848624589674125705556, −4.86177132375486527833704145984, −3.20922041708012070632887187616, −1.61928064157313403467831788335, 0,
1.61928064157313403467831788335, 3.20922041708012070632887187616, 4.86177132375486527833704145984, 6.16990717848624589674125705556, 7.77050153653225993151343386985, 7.997615749117124459344682799354, 9.540663835836650686316321655441, 10.29316234340885445789885747474, 11.51909936680503427975812663331