| L(s) = 1 | + (0.608 − 0.793i)3-s + (0.5 + 0.866i)4-s + (0.923 − 1.60i)5-s + (−0.258 − 0.965i)9-s + (−0.866 + 0.5i)11-s + (0.991 + 0.130i)12-s + (−0.707 − 1.70i)15-s + (−0.499 + 0.866i)16-s + 1.84·20-s + (1.22 + 0.707i)23-s + (−1.20 − 2.09i)25-s + (−0.923 − 0.382i)27-s + (−0.662 + 0.382i)31-s + (−0.130 + 0.991i)33-s + (0.707 − 0.707i)36-s + ⋯ |
| L(s) = 1 | + (0.608 − 0.793i)3-s + (0.5 + 0.866i)4-s + (0.923 − 1.60i)5-s + (−0.258 − 0.965i)9-s + (−0.866 + 0.5i)11-s + (0.991 + 0.130i)12-s + (−0.707 − 1.70i)15-s + (−0.499 + 0.866i)16-s + 1.84·20-s + (1.22 + 0.707i)23-s + (−1.20 − 2.09i)25-s + (−0.923 − 0.382i)27-s + (−0.662 + 0.382i)31-s + (−0.130 + 0.991i)33-s + (0.707 − 0.707i)36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1617 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.532 + 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1617 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.532 + 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.667995000\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.667995000\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.608 + 0.793i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (0.866 - 0.5i)T \) |
| good | 2 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.923 + 1.60i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.662 - 0.382i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.382 - 0.662i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.382 - 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + 1.41iT - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.382 + 0.662i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + 1.84iT - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.131329985881993528074230530280, −8.708401267029468781116273929640, −7.86823996826607998502037325138, −7.30711768031437002214646416624, −6.30001588498620475184922415561, −5.39231950722696926468317575874, −4.50105949069139363015064227452, −3.22684071291148735684081949016, −2.24865603418940823619950729988, −1.38920050538455677501457586007,
2.02685691618754861428873131804, 2.71490729072239713136450942390, 3.44547248685954171994677787752, 4.98513620724119079866608553483, 5.61988813628757992310770358825, 6.49216164257972695537094685676, 7.16560435277797397627340855693, 8.139902807339273977934841188164, 9.273837265905210945225649324280, 9.829374427648097829031666135643