L(s) = 1 | − 4.76i·3-s + 11.1·5-s − 15.5i·7-s + 4.30·9-s − 53.2i·15-s − 74.3·21-s − 207. i·23-s + 125.·25-s − 149. i·27-s − 306·29-s − 174. i·35-s + 460.·41-s + 30.9i·43-s + 48.1·45-s + 643. i·47-s + ⋯ |
L(s) = 1 | − 0.916i·3-s + 0.999·5-s − 0.842i·7-s + 0.159·9-s − 0.916i·15-s − 0.772·21-s − 1.88i·23-s + 1.00·25-s − 1.06i·27-s − 1.95·29-s − 0.842i·35-s + 1.75·41-s + 0.109i·43-s + 0.159·45-s + 1.99i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.38631 - 1.38631i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38631 - 1.38631i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - 11.1T \) |
good | 3 | \( 1 + 4.76iT - 27T^{2} \) |
| 7 | \( 1 + 15.5iT - 343T^{2} \) |
| 11 | \( 1 + 1.33e3T^{2} \) |
| 13 | \( 1 - 2.19e3T^{2} \) |
| 17 | \( 1 - 4.91e3T^{2} \) |
| 19 | \( 1 + 6.85e3T^{2} \) |
| 23 | \( 1 + 207. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 306T + 2.43e4T^{2} \) |
| 31 | \( 1 + 2.97e4T^{2} \) |
| 37 | \( 1 - 5.06e4T^{2} \) |
| 41 | \( 1 - 460.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 30.9iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 643. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 1.48e5T^{2} \) |
| 59 | \( 1 + 2.05e5T^{2} \) |
| 61 | \( 1 - 40.2T + 2.26e5T^{2} \) |
| 67 | \( 1 - 1.09e3iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 3.57e5T^{2} \) |
| 73 | \( 1 - 3.89e5T^{2} \) |
| 79 | \( 1 + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.14e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.38e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.61289108597088711463851000237, −11.08388398729350156450138184318, −10.19884772760449632941826778256, −9.142440889879378783652296202863, −7.76447838998563013933559703178, −6.86068672533443588908611754775, −5.90699923915792669497212227410, −4.32361141496976920208105231329, −2.36667406218455127757591975495, −0.997949833365966833715204881377,
1.93666941953532595376525967970, 3.59059949057182386486378014440, 5.13166426923616119496647256907, 5.89157886146161490282339699735, 7.42208168823084292373623505920, 9.084321433929143711189704304566, 9.488086514179841990883361147101, 10.50925174309259090151431033594, 11.52826403336226378199576198281, 12.78374071863924259370828546915