L(s) = 1 | + (1.41 + 0.0348i)2-s + (−0.670 − 0.277i)3-s + (1.99 + 0.0985i)4-s + (0.174 − 2.22i)5-s + (−0.938 − 0.416i)6-s + (−0.00242 − 0.00242i)7-s + (2.82 + 0.209i)8-s + (−1.74 − 1.74i)9-s + (0.325 − 3.14i)10-s + (2.39 + 5.78i)11-s + (−1.31 − 0.620i)12-s + (−0.904 + 2.18i)13-s + (−0.00334 − 0.00351i)14-s + (−0.736 + 1.44i)15-s + (3.98 + 0.393i)16-s − 4.91·17-s + ⋯ |
L(s) = 1 | + (0.999 + 0.0246i)2-s + (−0.387 − 0.160i)3-s + (0.998 + 0.0492i)4-s + (0.0782 − 0.996i)5-s + (−0.383 − 0.169i)6-s + (−0.000916 − 0.000916i)7-s + (0.997 + 0.0739i)8-s + (−0.582 − 0.582i)9-s + (0.102 − 0.994i)10-s + (0.722 + 1.74i)11-s + (−0.378 − 0.179i)12-s + (−0.250 + 0.605i)13-s + (−0.000893 − 0.000938i)14-s + (−0.190 + 0.373i)15-s + (0.995 + 0.0984i)16-s − 1.19·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.921 + 0.387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.921 + 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.72819 - 0.348500i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72819 - 0.348500i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 - 0.0348i)T \) |
| 5 | \( 1 + (-0.174 + 2.22i)T \) |
good | 3 | \( 1 + (0.670 + 0.277i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (0.00242 + 0.00242i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.39 - 5.78i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (0.904 - 2.18i)T + (-9.19 - 9.19i)T^{2} \) |
| 17 | \( 1 + 4.91T + 17T^{2} \) |
| 19 | \( 1 + (1.34 + 0.559i)T + (13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (-1.03 + 1.03i)T - 23iT^{2} \) |
| 29 | \( 1 + (-1.65 + 4.00i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + 7.82T + 31T^{2} \) |
| 37 | \( 1 + (-3.06 - 7.38i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (0.0199 + 0.0199i)T + 41iT^{2} \) |
| 43 | \( 1 + (6.09 - 2.52i)T + (30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 - 9.78T + 47T^{2} \) |
| 53 | \( 1 + (-8.86 + 3.67i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (4.32 - 1.78i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-2.84 + 6.87i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (5.87 + 2.43i)T + (47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + (-1.33 + 1.33i)T - 71iT^{2} \) |
| 73 | \( 1 + (-3.25 + 3.25i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.56iT - 79T^{2} \) |
| 83 | \( 1 + (3.50 - 8.45i)T + (-58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (3.60 - 3.60i)T - 89iT^{2} \) |
| 97 | \( 1 + 11.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.69300671734825437204586395978, −12.05923577148504119361388429953, −11.34204171945821047166256659885, −9.813057456475986714822035061129, −8.760527236083696557480128670392, −7.15373605398111531905645330000, −6.30359330335582041307929654322, −4.95159494770990106339098624638, −4.13829432281055862089707140226, −1.97782626192591275603343563341,
2.62909057116220130475133239891, 3.83015353236004157286793696497, 5.49403678419953838578342544953, 6.21169737851318076090104061641, 7.37189680414643991926253824194, 8.779055423775151127030305997844, 10.65829266135410891613560988005, 10.95182910443472063124010277953, 11.79383552237507730052347828630, 13.15485317672325649469027262035