| L(s) = 1 | + (0.294 − 0.294i)2-s + 0.827i·4-s + (0.537 + 0.537i)8-s − 0.511·16-s + (−1.40 + 1.40i)17-s + 1.95i·19-s + (−0.575 − 0.575i)23-s + 0.209·31-s + (−0.687 + 0.687i)32-s + 0.827i·34-s + (0.575 + 0.575i)38-s − 0.338·46-s + (1.34 − 1.34i)47-s + i·49-s + (−1.05 − 1.05i)53-s + ⋯ |
| L(s) = 1 | + (0.294 − 0.294i)2-s + 0.827i·4-s + (0.537 + 0.537i)8-s − 0.511·16-s + (−1.40 + 1.40i)17-s + 1.95i·19-s + (−0.575 − 0.575i)23-s + 0.209·31-s + (−0.687 + 0.687i)32-s + 0.827i·34-s + (0.575 + 0.575i)38-s − 0.338·46-s + (1.34 − 1.34i)47-s + i·49-s + (−1.05 − 1.05i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.224718929\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.224718929\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + (-0.294 + 0.294i)T - iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + (1.40 - 1.40i)T - iT^{2} \) |
| 19 | \( 1 - 1.95iT - T^{2} \) |
| 23 | \( 1 + (0.575 + 0.575i)T + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 0.209T + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-1.34 + 1.34i)T - iT^{2} \) |
| 53 | \( 1 + (1.05 + 1.05i)T + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.33T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - 1.33iT - T^{2} \) |
| 83 | \( 1 + (-1.05 - 1.05i)T + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.680854324969767095023370392021, −8.314161831096749696420454923385, −7.65786067878678106258630477190, −6.67638536658535259411218878661, −6.05168687772614425918688706579, −5.04224705395428698246140522028, −3.91741784626914654898473033472, −3.85856135652336802400570444076, −2.48614761004840701738026049128, −1.76382045518483821489354458043,
0.63336455953677212041394277839, 2.06032820121924514978865649224, 2.91547532187192105374833048489, 4.31316866300042303763116317771, 4.76678467395587837176688660790, 5.53592805072953991787094459530, 6.43111121857085257104541909020, 6.98230875980017954172741403706, 7.60997433294290453352252701708, 8.879015680680507224367487762270