L(s) = 1 | + (0.575 + 0.575i)2-s − 0.338i·4-s + (0.769 − 0.769i)8-s + 0.547·16-s + (−0.294 − 0.294i)17-s + 1.82i·19-s + (1.05 − 1.05i)23-s + 1.95·31-s + (−0.454 − 0.454i)32-s − 0.338i·34-s + (−1.05 + 1.05i)38-s + 1.20·46-s + (−0.831 − 0.831i)47-s − i·49-s + (1.40 − 1.40i)53-s + ⋯ |
L(s) = 1 | + (0.575 + 0.575i)2-s − 0.338i·4-s + (0.769 − 0.769i)8-s + 0.547·16-s + (−0.294 − 0.294i)17-s + 1.82i·19-s + (1.05 − 1.05i)23-s + 1.95·31-s + (−0.454 − 0.454i)32-s − 0.338i·34-s + (−1.05 + 1.05i)38-s + 1.20·46-s + (−0.831 − 0.831i)47-s − i·49-s + (1.40 − 1.40i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.826829594\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.826829594\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.575 - 0.575i)T + iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (0.294 + 0.294i)T + iT^{2} \) |
| 19 | \( 1 - 1.82iT - T^{2} \) |
| 23 | \( 1 + (-1.05 + 1.05i)T - iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.95T + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.831 + 0.831i)T + iT^{2} \) |
| 53 | \( 1 + (-1.40 + 1.40i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 0.209T + T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - 0.209iT - T^{2} \) |
| 83 | \( 1 + (1.40 - 1.40i)T - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.556634734224950099515989382788, −8.065090965880050197279227878881, −6.97336468668997464891151143519, −6.59107060563373037456526182697, −5.75188174701808866489485062547, −5.06969442458236443502704412888, −4.33371931744678430725110989130, −3.50031748641368130697923041717, −2.28476099868144884588710287688, −1.07483976215468366103946882184,
1.33118215215135597348859513116, 2.66608315167428115244170715612, 3.03235953501301402068837527928, 4.24407399085825798197818170072, 4.69852961859277240493314481691, 5.56560090620033309344972525398, 6.62454082140798058312555942750, 7.29462756153644745897848169147, 8.048890784684019988378233626634, 8.841181712204664889512552326659